
J
H
E
P
0
2
(
2
0
0
8
)
0
1
2

Published by Institute of Physics Publishing for SISSA

Received: October 3, 2007

Accepted: January 9, 2008

Published: February 5, 2008

Open G2 strings

Jan de Boer,a Paul de Medeiros,b Sheer El-Showka and Annamaria Sinkovicsc

aInstituut voor Theoretische Fysica,

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
bSchool of Mathematics and Maxwell Institute for Mathematical Sciences,

University of Edinburgh,

King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, U.K.
cDepartment of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, U.K.

E-mail: jdeboer@science.uva.nl, p.demedeiros@ed.ac.uk, sheer@science.uva.nl,

a.sinkovics@damtp.cam.ac.uk

Abstract: We consider an open string version of the topological twist previously proposed

for sigma-models with G2 target spaces. We determine the cohomology of open strings

states and relate these to geometric deformations of calibrated submanifolds and to flat

or anti-self-dual connections on such submanifolds. On associative three-cycles we show

that the worldvolume theory is a gauge-fixed Chern-Simons theory coupled to normal

deformations of the cycle. For coassociative four-cycles we find a functional that extremizes

on anti-self-dual gauge fields. A brane wrapping the whole G2 induces a seven-dimensional

associative Chern-Simons theory on the manifold. This theory has already been proposed

by Donaldson and Thomas as the higher-dimensional generalization of real Chern-Simons

theory. When the G2 manifold has the structure of a Calabi-Yau times a circle, these

theories reduce to a combination of the open A-model on special Lagrangians and the open

B+B̄-model on holomorphic submanifolds. We also comment on possible applications of

our results.

Keywords: Sigma Models, Topological Field Theories, Topological Strings, Differential

and Algebraic Geometry.

mailto:jdeboer@science.uva.nl
mailto:p.demedeiros@ed.ac.uk
mailto:sheer@science.uva.nl
mailto:a.sinkovics@damtp.cam.ac.uk
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
8
)
0
1
2

Contents

1. Introduction 2

2. A brief review of the closed topological G2 string 5

2.1 Sigma model for the G2 string 5

2.2 The G2 twist 6

2.3 The G2 string Hilbert space 7

2.4 The G2 string and geometry 8

3. Open string cohomology 9

3.1 Degree one 9

3.2 Degree zero 11

3.3 Degree two 11

3.4 Degree three 12

3.5 Harmonic constraints 12

4. Open string moduli 12

4.1 Calibrated geometry 13

4.2 Normal modes 14

4.3 Tangential modes 16

5. Scattering amplitudes 17

5.1 3-point amplitude 18

6. Worldvolume theories 19

6.1 Chern-Simons theory as a string theory 20

6.2 Chern-Simons theory on calibrated submanifolds 21

6.3 Normal mode contributions 24

6.4 Anti-self-dual connections on coassociative submanifolds 25

6.5 Seven-cycle worldvolume theory 27

6.6 Dimensional reduction, A- and B-branes 28

7. Gauge-fixing and quantization 29

7.1 Weak coupling limit 29

7.2 Phase of the determinant 31

7.3 3-cycle worldvolume theory 35

7.3.1 1-loop partition function 35

7.4 4-cycle worldvolume theory 36

7.4.1 1-loop partition function 37

– 1 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
2

8. Remarks and open problems 37

8.1 Holomorphic instantons on special Lagrangians 38

8.2 Extensions 39

8.3 Relation to twists of super Yang-Mills 40

8.4 Geometric invariants 40

8.5 Geometric transitions 40

8.6 Mirror symmetry for G2 41

8.7 Zero Branes 41

A. Conventions 41

B. Ghost structure 42

B.1 7-cycle theory 43

B.1.1 BV quantization 43

B.1.2 Unconstrained OSFT 45

B.2 Gauge-fixed OSFT action on calibrated cycles and the BV formalism 47

B.2.1 3-cycle theory 47

B.2.2 4-cycle theory 49

1. Introduction

Topological strings have been studied quite intensively as a toy model of ordinary string

theory. Besides displaying a rich mathematical structure, they partially or completely con-

trol certain BPS quantities in ordinary string theory, and as such have found applications

e.g. in the study BPS black holes and non-perturbative contributions to superpotentials.

Unfortunately, a full non-perturbative definition of topological string theory is still

lacking, but it is clear that it will involve ingredients from both the A- and B-model, and

that both open and closed topological strings will play a role. Since M-theory is crucial in

understanding the strong coupling limit and nonperturbative properties of string theory,

one may wonder whether something similar is true in the topological case, i.e. does there

exist a seven-dimensional topological theory which reduces to topological string theory in

six dimensions when compactified on a circle? And could such a seven-dimensional theory

shed light on the non-perturbative properties of topological string theory?

In order to find such a seven-dimensional theory one can use various strategies. One

can try to directly guess the spacetime theory, as in [1, 2], or one can try to construct a

topological membrane theory as in [3 – 7] (after all, M-theory appears to be a theory of

membranes, though the precise meaning of this sentence remains opaque). In this paper

we will follow a different approach and study a topological version of strings propagat-

ing on a manifold of G2 holonomy, following [8] (for an earlier work on G2 sigma-models

see [9]). In [8] the topological twist was defined using the extended worldsheet algebra

that sigma-models on manifolds with exceptional holonomy possess [10]. For manifolds of
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G2 holonomy the extended worldsheet algebra contains the c = 7/10 superconformal alge-

bra [9] that describes the tricritical Ising model, and the conformal block structure of this

theory was crucial in defining the twist. In [8] it was furthermore shown that the BRST

cohomology of the topological G2 string is equivalent to the ordinary de Rham cohomology

of the seven-manifold, and that the genus zero three-point functions are the third deriva-

tives of a suitable prepotential, which turned out to be equal to the seven-dimensional

Hitchin functional of [11]. The latter also features prominently in [1, 2], suggesting a close

connection between the spacetime and worldsheet approaches.

In the present paper we will study open topological strings on seven-manifolds of G2

holonomy, using the same twist as in [8]. There are several motivations to do this. First

of all, we hope that this formalism will eventually lead to a better understanding of the

open topological string in six dimensions. Second, some of the results may be relevant for

the study of realistic compactifications of M-theory on manifolds of G2 holonomy,1 for a

recent discussion of the latter see e.g. [12]. Third, by studying branes wrapping three-cycles

we may establish a connection between topological strings and topological membranes in

seven dimensions. And finally, for open topological strings one can completely determine

the corresponding open string field theory [13], from which one can compute arbitrary

higher genus partition functions and from which one can also extract highly non-trivial all-

order results for the closed topological string using geometric transitions [14]. Repeating

such an analysis in the G2 case would allow us to use open G2 string field theory to perform

computations at higher genus in both the open and closed topological G2 string. This is

of special importance since the definition and existence of the topological twist at higher

genus has not yet been rigorously established in the G2 case.

Along the way we will run into various interesting mathematical structures and topo-

logical field theories in various dimensions that may be of interest in their own right.

The outline and summary of this paper is as follows. We will first briefly review the

closed topological G2 string and its Hilbert space. We will then consider open topological

strings and their boundary conditions. Consistent boundary conditions are those which

preserve one copy of the non-linear G2 worldsheet algebra and were previously analyzed

in [15, 16]. One finds that there are topological zero-, three-, four- and seven-branes in the

theory.2 The three- and four-branes wrap associative and coassociative cycles respectively

and are calibrated by the covariantly constant three-form and its Hodge-dual which define

the G2 structure.

Next, we compute the topological open string spectrum in the presence of these branes.

For a seven-brane, the spectrum has a simple geometric interpretation in terms of the

Dolbeault cohomology of the G2 manifold. To define the Dolbeault cohomology, we need

to use the fact that G2 ⊂ SO(7) acts naturally on differential forms, and we can decompose

them into G2 representations. In this paper, we will use the notation πp
n to denote the

projection of the space of p-forms Λp onto the irreducible representation n of G2. The

1This will require an extension of our results to singular manifolds which is an interesting direction for

future research.
2It is unclear to us how we could incorporate coisotropic six-branes in our theory, whose existence is

suggested in [17].
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Dolbeault complex is then

0 −→ Λ0 d−→ Λ1 π2
7
d−→ π2

7(Λ2)
π3
1
d−→ π3

1(Λ3) −→ 0 . (1.1)

The topological open string BRST cohomology is the cohomology of this complex and

yields states at ghost numbers 0, 1, 2, 3. For zero-, three- and four-branes the cohomology

is obtained by reducing the above complex to the brane in question.

In section 4 we will verify explicitly that the BRST cohomology in ghost number one

contains the space of (generalized) flat connections on the brane, but also contains the

infinitesimal moduli of the topological brane. In particular, we will see that the topological

open string reproduces precisely the results in the mathematics literature [18] regarding

deformations of calibrated cycles in manifolds of G2 holonomy.

We briefly discuss scattering amplitudes in section 5 and use them to construct the

open topological string field theory following methods discussed in [13] in section 6. The

final answer for the open topological string field theory turns out to be very simple. For

seven-branes we obtain the associative Chern-Simons (CS) action

S =

∫

Y
∗φ ∧ CS3(A) , (1.2)

with CS3(A) the standard Chern-Simons three-form and ∗φ the harmonic four-form on

the G2 manifold Y . For the other branes we obtain the dimensional reduction of this

action to the appropriate brane. The action (1.2) was first considered in [19, 20], and it is

gratifying to have a direct derivation of this action from string theory. We will also discuss

the dimensional reduction of this theory on CY3 × S1, which leads to various real versions

of the open A- and B-model, depending on the brane one is looking at. The situation is

very similar to the closed topological G2 string, which also reduced to a combination of real

versions of the A- and B-models. It is presently unclear to us whether we should interpret

this as meaning that the partition functions of the open and closed topological G2 strings

should not be interpreted as wave functions, as opposed to the partition functions of the

open and closed A- and B-models, which are most naturally viewed as wave functions.

The last subject we discuss in section 6 is the emergence of worldsheet instanton

contributions of the topological string theory on Calabi-Yau manifolds from the topological

G2 string on CY3 × S1. Though our analysis is not yet conclusive, it appears that these

worldsheet instanton effects arise from wrapped branes in the G2 theory and not directly

from worldsheet instantons.

Finally, in section 7 we make a preliminary investigation of the gauge-fixing and quan-

tization of (1.2) and its reductions to four- and three-dimensional branes. As was the case

in the open string field theory for A-branes, the gauge-fixed actions look very similar to

the action (1.2) once we replace the ghost number one field A by a field of arbitrary ghost

number. We also study the one-loop partition functions of the various open string field

theories, and find that they tend to have the effect of shifting the tree-level theories in a

rather simple way. This is similar to the one-loop shift k → k + h(G) of the level k in

ordinary Chern-Simons theory, with h(G) the dual Coxeter number of the gauge group G.
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In particular, we find that ∗φ in (1.2) is shifted by a four-form proportional to the first

Pontrjagin class of the manifold Y . We have not yet attempted to determine whether (1.2)

is renormalizable and well-defined as a quantum theory (which, by naive power-counting,

it is not) but we expect that it should be as it is equivalent to a string theory (a similar

issue occurs for holomorphic Chern-Simons in the B-model).

We conclude with a list of open problems and have collected various technical results

in the appendices.

We will adhere to the following conventions: M will refer to a calibrated submanifold

of dimension 3 or 4 (i.e. calibrated by φ or ∗φ, respectively); these are known, respectively,

as associative and coassociative submanifolds. The ambient G2 manifold will be denoted Y .

2. A brief review of the closed topological G2 string

Let us briefly review the definition of the topological G2 string found in [8]. We will cover

only essential points. For further details we refer the reader to [8].

2.1 Sigma model for the G2 string

The topological G2 string constructs a topological string theory with target space a seven-

dimensional G2-holonomy manifold Y . This topological string theory is defined in terms

of a topological twist of the relevant sigma-model. In order to have N = 1 target space

supersymmetry, one starts with an N = (1, 1) sigma model on a G2 holonomy manifold.

The special holonomy of the target space implies an extended supersymmetry algebra for

the worldsheet sigma-model [10]. That is, additional conserved supercurrents are generated

by pulling back the covariantly constant 3-form φ and its hodge dual ∗φ to the worldsheet as

φµνρ(X)DXµDXνDXρ ,

where X is a worldsheet chiral superfield, whose bosonic component corresponds to the

world-sheet embedding map. From the classical theory it is then postulated that the ex-

tended symmetry algebra survives quantization, and is present in the quantum theory.

This postulate is also based on analyzing all possible quantum extensions of the symmetry

algebra compatible with spacetime supersymmetry and G2 holonomy.

A crucial property of the extended symmetry algebra is that it contains an N = 1

SCFT sub-algebra, which has the correct central charge of c=7/10 to correspond to the

tri-critical Ising unitary minimal model. Unitary minimal models have central charges in

the series c = 1 − 6
p(p+1) (for p an integer) so the tri-critical Ising model has p = 4.

The conformal primaries for such models are labelled by two integer Kac labels, n′ and

n, as φ(n′,n) where 1 ≤ n′ ≤ p and 1 ≤ n < p. The Kac labels determine the conformal

weight of the state as hn′,n = [pn′−(p+1)n]2−1
4p(p+1) . The Kac table for this minimal model is

reproduced in [8, table 1]. Note that primaries with label (n′, n) and (p+ 1−n′, p−n) are

equivalent. This model has six conformal primaries with weights hI = 0, 1/10, 6/10, 3/2

(for the NS states) and hI = 7/16, 3/80 (for the R states).
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The conformal block structure of the weight 1/10, φ(2,1), and of the weight 7/16 pri-

mary, φ(1,2), is particularly simple,

φ(2,1) × φ(n′,n) = φ(n′−1,n) + φ(n′+1,n) ,

φ(1,2) × φ(n′,n) = φ(n′,n−1) + φ(n′,n+1) ,

where φ(n′,n) is any primary. This conformal block decomposition is schematically denoted

as

Φ(2,1) = Φ↓

(2,1) ⊕ Φ↑

(2,1) ,

Φ(1,2) = Φ−
(1,2) ⊕ Φ+

(1,2) . (2.1)

The conformal primaries of the full sigma-model are labelled by their tri-critical Ising model

highest weight, hI , and the highest weight corresponding to the rest of the algebra, hr, as

|hI , hr〉. This is possible because the stress tensors, TI , of the tricritical sub-algebra and

of the ‘rest’ of the algebra, Tr = T − TI (where T is the stress tensor of the full algebra),

satisfy TI · Tr ∼ 0.

2.2 The G2 twist

The standard N = (2, 2) sigma-models can be twisted by making use of the U(1) R-

symmetry of their algebra. Using the U(1) symmetry, the twisting can be regarded as

changing the worldsheet sigma-model with a Calabi-Yau target space by the addition of

the following term:

±ω
2
ψψ , (2.2)

with ω the spin connection on the world-sheet. This effectively changes the charge of the

fermions under worldsheet gravity to be integral, resulting in the topological A/B-model

depending on the relative sign of the twist in the left and right sector of the theory (for

fermions with holomorphic or anti-holomorphic target space indices). Here ψ and ψ can

be either left- or right-moving worldsheet fermions and ω is the spin-connection on the

worldsheet. In the topological theory, before coupling to gravity, there are no ghosts or

anti-ghosts so these are the only spinors/fermions in the system.

This twist has been re-interpreted [21, 22] as follows. First think of the exponentiation

of (2.2) as an insertion in the path integral rather than a modification of the action. By

bosonising the world-sheet fermions we can write ψψ = ∂H for a free boson field so the

above becomes
∫

ω

2
∂H = −

∫

H
∂ω

2
=

∫

HR , (2.3)

where R is the curvature of the world-sheet. We can always choose a gauge for the metric

such that R will only have support on a number of points given by the Euler number of

the worldsheet.

For closed strings on a sphere the Euler class has support on two points which can be

chosen to be at 0 and ∞ (in the CFT defined on the sphere) so the correlation functions in
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the topological theory can be calculated in terms of the original CFT using the following

dictionary:

〈. . .〉twisted =
〈

eH(∞) . . . eH(0)
〉

untwisted
. (2.4)

The ‘untwisted’ theory should not be confused with the physical theory, because it does not

include integration over world-sheet metrics and hence has no ghost or superghost system

and also it is still not at the critical dimension. The equation above simply relates the

original untwisted N = 2 sigma-model theory to the twisted one.

In [8] a related prescription is given to define the twisted ‘topological’ sigma-model on

a 7-dimensional target space with G2 holonomy. Here the role of the U(1) R-symmetry

is played by the tri-critical Ising model sub-algebra. However, a difference is that the

topological G2 sigma-model is formulated in terms of conformal blocks rather than in

terms of local operators. In particular the operator H in the above is replaced by the

conformal block Φ+
(1,2).

The main point of the topological twisting is to redefine the theory in such a way that

it contains a scalar BRST operator. In the G2 sigma model, the BRST operator is related

to the conformal block of the weight 3/2 current G(z) of the super stress-energy tensor,3

Q = G↓

− 1
2

.

It should be pointed out that in [8] it was not possible to explicitly construct the twisted

stress tensor, and although there is circumstantial evidence that the topological theory

does exist beyond tree level this statement remains conjectural.

2.3 The G2 string Hilbert space

In a general CFT the set of states can be generated by acting with primary operators and

their decendants on the vacuum state, resulting in an infinite dimensional Fock space. In

string sigma models this Fock space contains unphysical states, and so the physical Hilbert

space is given by the cohomology of the BRST operator on this physical Hilbert space

which is still generally infinite-dimensional.

In the topological A- and B-models a localization argument [22] implies that only

BRST fixed-points contribute to the path integral and these correspond to holomorphic

and constant maps, respectively. Thus the set of field configurations that when quantized,

generate states in the Hilbert space is restricted to this subclass of all field configurations

and so the Fock space is much smaller. Upon passing to BRST cohomology this space

actually becomes finite-dimensional.

In the G2 string the localization argument cannot be made rigorous, because the action

of the BRST operator on the worldsheet fields is inherently quantum, and so is not well

defined on the classical fields. Neglecting this issue and proceeding naively, however, one

can construct a localization argument for G2 strings that suggests that the path integral

3The super stress-energy tensor is given as T(z, θ) = G(z) + θT (z). The current G(z) can be further

decomposed as G(z) = Φ(2,1) ⊗Ψ 14

10

, in terms of the tri-critical Ising-model part and the rest of the algebra,

respectively. Since its tri-critical Ising model part contains only the primary Φ(2,1), it can be decomposed

into conformal blocks accordingly.
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localizes on the space of constant maps [8]. Thus we will take our initial Hilbert space

to consist of states generated by constant modes Xµ
0 and ψµ

0 on the world-sheet (in the

NS-sector there is no constant fermionic mode but the lowest energy mode ψµ

− 1
2

is used

instead). These correspond to solutions of worldsheet equations of motion with minimal

action which dominate the path integral in the large volume limit.

In [22] the fact that the path integral can be evaluated by restricting to the space of

BRST fixed points is related to another feature of the A/B-models: namely the coupling-

invariance (modulo topological terms) of the worldsheet path integral. Variations of the

path integral with respect to the inverse string coupling constant t ∝ (α′)−1 are Q-exact,

so one may freely take the weak coupling limit t→ ∞ in which the classical configurations

dominate. This limit is equivalent to rescaling the target space metric, and so we will refer

to it as the large volume limit.

Accordingly, all the calculations in the A- and B- model can be performed in the

limit where the Calabi-Yau space has a large volume relative to the string scale, and the

worldsheet theory can be approximated by a free theory. The G2 string also has the char-

acteristics of a topological theory, such as correlators being independent of the operator’s

positions, and the fact that the BRST cohomology corresponds to chiral primaries. On the

other hand since the theory is defined in terms of the conformal blocks, it is difficult to

explicitly check the coupling constant independence. Based on the topological arguments,

and on the postulate of the quantum symmetry algebra, in this paper we will assume the

coupling constant independence and the validity of localization arguments. Even if these

arguments should fail for subtle reasons, the results of this paper are always valid in the

large volume limit.

2.4 The G2 string and geometry

As in the topological A- and B-model, for the topological G2 string there is a one-to-one

correspondence between local operators of the form Oωp = ωi1...ipψ
i1 . . . ψip and target

space p-forms ωp = ωi1...ipdx
i1 ∧ . . . ∧ dxip . In [8] it is found that the BRST cohomology

of the left (right) sector alone maps to a certain refinement of the de Rham cohomology

described by the ‘G2 Dolbeault’ complex

0 → Λ0
1

Ď−→ Λ1
7

Ď−→ Λ2
7

Ď−→ Λ3
1
→ 0 . (2.5)

The notation is that Λp
n denotes differential forms of degree p, transforming in the

irreducible representation n of G2. The operator Ď acts as the exterior derivative on

0-forms, and as

Ď(α) = π2
7
(dα) if α ∈ Λ1 ,

Ď(β) = π3
1
(dβ) if β ∈ Λ2 ,

where π2
7

and π3
1

are projectors onto the relevant representations. The explicit expressions

for the projectors and the standard decomposition of the de Rham cohomology are included

in appendix A. Thus, the BRST operator G↓

−1/2 maps to the differential operator of

– 8 –
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the complex Ď. In the closed theory, combining the left- and right-movers, one obtains

the full cohomology of the target manifold, accounting for all geometric moduli: metric

deformations, the B-field moduli, and rescaling of the associative 3-form φ. The relevant

cohomology for the open string states will be worked out in the following sections.

3. Open string cohomology

We will now consider the Q cohomology of the open string states. Later, we will interpret

part of this cohomology in terms of geometric and non-geometric (gauge field) moduli on

calibrated 3- and 4-cycles.

In [8] states in the G2 CFT were shown to satisfy a certain non-linear bound in terms

of hI and hr and states saturating this bound are argued to fall into shorter, BPS, rep-

resentation of the non-linear G2 operator algebra. Such states are referred to as chiral

primaries. Analogous to the N = 2 case, it is the physics of these primaries that the twist

is intended to capture and thus they are the states that occur in the BRST cohomology.

The chiral primaries in the NS sector have h = 0, 1/2, 1, 3/2 and hI = 0, 1/10, 6/10, 3/2

and they are the image of the RR ground states under spectral flow.

Recall that we are working in the zero mode approximation (corresponding to the large

volume limit, t→ ∞, where oscillator modes can be neglected) and in this limit a general

state is of the form Aµ1...µn(X0)ψ
µ1
0 . . . ψµn

0 . On such states L0 acts as t�+ n
2 so states with

h = 0, 1/2, 1, 3/2 correspond to 0, 1, 2, and 3 forms (f(X0), Aµ(X0)ψ
µ
0 , . . . ). As argued

in [8] we can thus consider Q-cohomology on the space of 0, 1, 2, and 3 forms restricted to

those that have hI = 0, 1/10, 6/10, 3/2, respectively.

In general we are interested in harmonic representatives of the Q cohomology so we will

look for operators (corresponding to states) that are both Q- and Q†-closed. The results

we obtain are essentially the same as those for one side of the closed worldsheet theory [8].

3.1 Degree one

We will start by looking at the h = 1/2 state, because it is the only one that will generate a

marginal deformation of the theory. A general state with h = 1/2 is of the form Aµ(X)ψµ

so long as4

[L0, Aµ(X)] = t�Aµ(X) = 0 (3.1)

It also satisfies

[LI
0, Aµ(X)ψµ] =

1

10
Aµ(X)ψµ ,

so it is a chiral primary (i.e. it saturates the chiral bound). Because it is a chiral primary,

it has to be Q-closed [8]. Rather than proceed along these lines, however, we will consider

the Q-cohomology directly from the definition of Q.

4Although we will sometimes use the full fields X and ψ in the CFT and also consider OPE’s which

generate deriviatives of these fields the reader should recall that we are always working in the large volume

limit where these reduce to X0 and ψ0.
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Let us determine the Q-cohomology of 1-forms A = Aµ(X)ψµ. We first calculate

{G− 1
2
, Aµ(X)ψµ} in the CFT on the complex plane with z complex ‘bulk’ coordinates and

y ‘boundary’ coordinates on the real line

{G−1/2, Aµ(X)ψµ} =

∮

dz G(z) ·Aµ(X)ψµ(y) ,

G(z) ·Aµ(X)ψµ(y) = gρσ(X)ψρ∂Xσ(z) · Aµ(X)ψµ(y)

∼ ∂(ln |z − y|2 + ln |z − y|2)∇ρAµψ
ρ(z)ψµ(y)

+
1

z − y
∂Xµ(z)Aµ(X(y)) .

(3.2)

This gives5

{G−1/2, Aµ(X)ψµ} = Aµ∂X
µ(y) +

1

2
∂[µAν]ψ

µψν . (3.3)

To compute the action of Q we now project onto the ↓ part, which includes only the part

with tri-critical Ising weight 6/10. The term Aµ∂X
µ vanishes in the zero mode limit so we

only need to consider the second term. The condition that this term has hI = 6
10 is [8]

(

π2
14

)ρσ

µν
∂[ρAσ] = 0 , (3.4)

where π2
14

is the projector onto the 2-form subspace Λ2
14

⊂ Λ2, in the 14 representation of

G2.

This result implies that the 6
10 part of ∂[ρAσ] (or any 2-form) is in Λ2

7
, so on a 1-form

we can define Q as

{Q,Aµψ
µ} = (π2

7
){G− 1

2
, Aµψ

µ} = 6φ γ
µν φ ρσ

γ ∂[ρAσ]dx
µ ∧ dxν = ĎA = 0 , (3.5)

where we have used

(π2
7)ρσ

µν = 4(∗φ)ρσ
µν +

1

6
(δρ

µδ
σ
ν − δσ

µδ
ρ
ν) = 6φ γ

µν φ ρσ
γ . (3.6)

Note that Q acting on 1-forms has reduced essentially to Ď; the same will occur for forms

of other degrees.

Let us now consider Q-coclosure. The inner product of states

〈

A[µν]ψ
µψν |B[αβ]ψ

αψβ
〉

,

becomes the inner product of forms
∫

Y (∗A ∧B), so Q† acting on A is given by

〈Q · f(X)|Aµ(X)ψµ〉 =
〈

f(X)|Q† ·Aµψ
µ
〉

, which can be determined as

〈Q · f(X)|Aµ(X)ψµ〉 =

∫ √
g∂µf(X)Aµ(X) = −

∫ √
gf(X)∇µA

µ(X) . (3.7)

So if Aµ is also required to satisfy

Q† · Aµ(X)ψµ = −∇µA
µ(X) = 0 , (3.8)

then it is Q- and Q†-closed and hence a harmonic represenative of Q-cohomology.

5We have not been careful about the relative normalizations of the bosonic and fermionic bulk-boundary

OPE’s, but this is not relevant as in all computations of this type that occur below, we will only end up

keeping one of the terms.
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3.2 Degree zero

The cohomology in degree zero is rather trivial. Given a degree zero mode f(X) we have

{Q, f(X)} = ∂µf(x)ψµ. This follows from Q = G↓

− 1
2

= G− 1
2
, because the projection onto

the ↓ component is trivial since all operators of the form Aµ(X)ψµ automatically have LI
0

weight 1
10 . So Q-closure implies

∂µf(X) = 0 . (3.9)

The Q†-closure here is vacuous since there are no lower degree fields.

3.3 Degree two

In degree two we start with a two form ωρσψ
ρψσ which should have LI

0 weight 6
10 , so it

should satisfy π2
7
(ω) = ω. The need to restrict ω ∈ Λ2

7
comes from the way Q is defined

in [8]. We must once more calculate the action of G− 1
2
, and then project it onto the ↓ part

{G− 1
2
, ω} =

∮

dz gµνψ
µ∂Xν(z) · ωρσψ

ρψσ

=

∮

dz
1

z
gµν∂

νωρσψ
µψρψσ +

1

z
gµν∂X

νωρσg
µρψσ − 1

z
gµν∂X

νωρσg
µσψρ

= ∂µωρσψ
µψρψσ + 2ωρσ∂X

ρψσ . (3.10)

Once more we can drop the second term in the large volume limit in which we are working.

We use the result in [8] that the projector onto the LI
0 weight 3

2 corresponds to the projector

onto Λ3
1
, and is given by contracting with the associative 3-form φ. So for Ω ∈ Λ3

1

φαβγΩαβγφµνρ = 7Ωµνρ . (3.11)

In particular, we can project onto the 3
2 part of {G− 1

2
, ω} = ∂µωρσ using φαβγ , so Q-closure

implies

φαβγ∂[αωβγ] = 0 . (3.12)

Note that this once again can be written as Ďω = 0.

We will now derive the Q†-closure condition. This is done in exactly the same way as

was done for the degree one components

〈ω|Q · Aµ(X)ψµ〉 =

∫ √
gωµν(π2

7)αβ
µν∂αAβ = −

∫ √
gAβ

(

(π2
7)αβ

µν∇αω
µν

)

, (3.13)

so

Q† · ω = −(π2
7)µν

αβ∇αωµνdx
β = −6φµν

γφ
γ
αβ∇αωµνdx

β = −∇αωαβdx
β = 0 . (3.14)

Here we have used π2
7
(ω) = ω.
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3.4 Degree three

A 3-form Ωµνρψ
µψνψρ is first projected onto its Λ3

1
component by Q, so we take π3

1
(Ω) = Ω,

which means that Ω is a function times φ. From the definition of Q it is evident that it

acts trivially on Ω since there is no higher LI
0 eigenstate in the NS sector for Q to project

onto. This implies Q = 0 on three forms which matches (2.5). Thus we see that the action

of Q on states in the zero mode approximation maps into the complex (2.5) as anticipated

in section 2.4.

The Q-coclosure of Ω is derived similarly to the 1- and 2-form case and gives

Q† · Ω = ∇µΩµνρdx
ν ∧ dxρ = 0 . (3.15)

3.5 Harmonic constraints

In the previous subsections we considered the conditions for Q- and Q†-closure on the states

in the G2 CFT. These conditions are all linear in derivatives but they must be enforced

simultaneously to generate unique representatives of Q-cohomology. As Q corresponds to

the operator Ď discussed in section 2.4, it generates the Dolbeault complex (2.5) which is

known to be elliptic [23, 19] and so can be studied using Hodge theory. This implies that

physical states in the theory correspond to the kernel of the Laplacian operator {Q,Q†},
so one can equivalently consider this single non-linear condition instead of the two seperate

linear conditions imposed by Q and Q†.

These Q-harmonic conditions (derived from the actions of Q and Q†) are

{Q,Q†} · f = ∇µ∂
µf = 0 ,

{Q,Q†} ·Aνψ
ν =

(

∇ν∇µA
µ + (π2

7
) γµσ
ν ∇γ∇µAσ

)

ψν = 0 ,

{Q,Q†} · ωµνψ
µψν =

(

(π2
7
) αβ
µν ∇α∇γωβγ + (π3

1
) αβγ
µνρ ∇ρ∇αωβγ

)

ψµψν = 0 . (3.16)

We have used π2
7(ω) = ω to simplify the last expression above.

4. Open string moduli

In a general topological theory one can use elements of degree one cohomology to deform

the theory using descendant operators. If O is a degree one operator, in the A/B-model

this means that it has ghost number one, whereas in the G2 string this means that it

corresponds to one ‘+’ conformal block. Then one can deform the action by adding a

term
∫

∂Σ{G
↑

− 1
2

,O}, which is Q = G↓

− 1
2

closed and of degree 0. Thus the elements of H1
Q

cohomology should correspond to possible deformations of the theory or tangent vectors

to the moduli space of open topological G2 strings.

Since open strings correspond to supersymmetric6 branes, the full moduli space should

include both the moduli space of the field theory on the brane as well as the geometric

moduli of the branes. For G2 manifolds the latter are simply the moduli of associative

and coassociative 3- and 4-cycles, respectively, which have been studied in [18]. Below

6In the sense of preserving the extended worldsheet superalgebra.
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we will show that the operators O corresponding to normal modes do satisfy the correct

constraints to be deformations of the relevant calibrated submanifolds. Since a priori it is

not known what the field theory on these branes will be, in the topological case we will

study the constraints on the tangential modes (which in physical strings would correspond

to gauge fields on the brane), and attempt to interpret these as infinitesimal deformations

in the moduli space of some gauge theory on the brane.

4.1 Calibrated geometry

In order to preserve the extended symmetry algebra (such as N = 2 orG2) of the worldsheet

SCFT in the presence of a boundary, certain constraints must be imposed on the worldsheet

currents. These have been studied in [24, 15], and more extensively in [25, 26, 16]. One

imposes the boundary condition on the left- and right-moving components of the worldsheet

fermions, ψµ
L = Rµ

ν (X)ψν
R, and then conservation of the worldsheet currents in the presence

of the boundary implies that, on the subspace M where open strings can end,

φµνσ = ηφR
α
µR

β
νR

γ
σφαβγ ,

(∗φ)µνσλ = ηφR
α
µR

β
νR

γ
σR

ρ
λ(∗φ)αβγλ det(R)

= Rα
µR

β
νR

γ
σR

ρ
λ(∗φ)αβγλ .

(4.1)

Note that Rα
µ(X) (for any X ∈ M) is generally a position-dependent invertible matrix,

but locally it can be diagonalized with eigenvalues +1 in Neumann directions and −1

in Dirichlet directions. ηφ = ±1 gives two different possible boundary conditions with

the choice of ηφ = 1 corresponding to open strings ending on a calibrated 3-cycle, while

ηφ = −1 corresponds to strings on a calibrated 4-cycle [15]. Calibrated submanifolds,

first studied in [27], are characterized by the property that their volume form induced by

the metric in the ambient space is the pull-back of particular global forms, in this case φ

(for associative 3-cycles) or ∗φ (for coassociative 4-cycles). This implies the volume of the

calibrated submanifold is minimal in its homology class.

Remark. There are several subtleties regarding boundary conditions in topological

sigma-models that deserve to be mentioned. Below, we will advocate the perspective

that any boundary condition preserving the extended algebra7 should also be a boundary

condition of the topological theory, because the presence of an extended algebra allows one

to define a twisted theory. In the A- and B-model, however, although both the A- and

B-brane boundary conditions preserve the N = 2 algebra, each is compatible with only one

of the twists, so a given topological twist is not necessarily compatible with an arbitrary

algebra-preserving boundary condition. Moreover, a given topological twist might only

depend on the existence of a subalgebra of the full extended algebra, so may be possible

even with boundary conditions that do not preserve the full extended algebra. A concrete

example of this is the Lagrangian boundary condition for the A-model branes proposed

by Witten [13]. This condition is considerably less restrictive that the special Lagrangian

7To be precise the boundary conditions preserve some linear combination of the extended algebra in the

left/right sector of the worldsheet. So a brane may reduce an N = (2, 2) theory to an N = 2 theory.
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condition required to preserve the full N = 2 algebra in the physical string [24] and reflects

the fact that the A-model is well-defined for any Kähler manifold and does not require a

strict Calabi-Yau target space. While similar subtleties might, in principle, exist for the

G2 twist they are concealed by the fact that the twist does not have a classical realization

that we know of. So we will tentatively assume the correct boundary conditions are those

that preserve the full G2 algebra on one half of the worldsheet theory.

4.2 Normal modes

Let us now consider the cohomology of open strings ending on a D-brane which wraps either

an associative 3-cycle or a co-associative 4-cycle. We adopt the convention that I, J,K, . . .

are indices normal to the brane while a, b, c, . . . are tangential, and Greek letters run over

all indices. The state Aµψ
µ decomposes into normal and tangential modes which will be

denoted θIψ
I and Aaψ

a respectively; all momenta is tangential, denoted by ka. The normal

modes will have the form A = θI(X
a)ψI so G−1/2 ·A = ∂aθI(X

b)ψaψI . Here A will denote

a general operator/state in the CFT and should not be confused with the gauge field (or

operator) Aµψ
µ.

Associative 3-cycles. Let us now consider the Q-cohomology when restricted to an

associative 3-cycle M . On the 3-cycle the form φ must satisfy [16]

φµνσ = Rα
µR

β
νR

γ
σφαβγ . (4.2)

Since M is associative, φ acts as a volume form on this cycle and, from the above, it is

only non-vanishing for an odd number of tangential indices8

φabc = ǫabc ,

φIbc = 0 ,

φIJK = 0 .

(4.3)

The Q-closure of normal modes is given by (3.5)

φ J
bK φ aI

J ∇aθI = 0 , (4.4)

where the index structure is enforced by the requirement that φ has an even number of

normal indices.

To understand the geometric significance of equation (4.4) in the abelian theory, recall

that θI is just a section of the normal bundle NM of M in Y , which by the tubular

neighborhood theorem can be identified with an infinitesimal deformation of M . This

equation is the linear condition on θI such that the exponential map (defined by flowing

along a geodesic in Y defined by θI) expθ(M) takes M to a new associative submanifold

M ′. This is just a reformulation of the condition given in [18].

8Here, and throughout the paper, we will take ǫ to be the volume form on the (sub)manifold not merely

the antisymmetric tensor.
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In [18] McLean defines a functional on the space of (integrable) normal bundle sections

by

Fγ(θ) = (∗φ(x))µνργ
∂xµ

∂σa

∂xν

∂σb

∂xρ

∂σc
ǫabc ∝ (∗φ(x))µνργ

∂xµ

∂σa

∂xν

∂σb

∂xρ

∂σc
φabc . (4.5)

Here x(t, θ, σ) = expθ(σ, t) is a geodesic curve parameterized by the variable 0 < t < t1,

which starts at a point σ ∈ M with ẋ(σ) = θ at t = 0, and flows after a fixed time to

x(t = t1, θ, σ) ∈ M ′, the new putative associative submanifold. The functional is just the

pull-back9 of ∗φ from M ′ to M and it should vanish if M ′ is associative.

ForM ′ to be a associative it turns out to be sufficient to require that the time derivative

of F at t = 0 vanishes, which gives

Ḟγ(θ)|t=0 = (∗φ(x))Ibcγ∂aθ
Iφabc = φ a

Iγ ∂aθ
I . (4.6)

This is equivalent to (4.4) since each choice of bK indices in that equation gives only one

non-vanishing term. The space of such deformations is generally not a smooth manifold

and currently the moduli space of associative submanifolds of a given G2 manifold is not

well understood (but see [28] for some recent work on this).

At first glance (4.4) looks like the linearized equation (4.7) in [5] but the fields in that

action are actually embedding maps which are non-linear, whereas the θI above are more

closely related to linearized fluctuations around fixed embedding maps.10

Remark. The harmonic condition as follows from (3.16) for normal modes is

(π2
7)a bJ

I ∇a∇bθJ = 0 . (4.7)

This also has a nice geometrical interpretation as vector fields θI extremizing the action
∫

M
〈Q · θ,Q · θ〉 , (4.8)

on the associative 3-cycle. Theorem 5-3 in [18] shows that the zeros of this action (which are

extrema since it is positive semi-definite) correspond to a family of deformations through

minimal submanifolds.

Coassociative 4-cycles. The consideration of the 4-cycle M is similar to that of the

3-cycle, but now in the boundary condition we have ηφ = −1, so the non-vanishing com-

ponents of φ must have an odd number of normal indices and

φabc = 0 . (4.9)

9More precisely we are pulling back χ ∈ Ω3(Y, TY ), a tangent bundle valued 3-form, defined using the

G2 metric χα
µνρ = gαβ(∗φ)βµνρ.

10In [5], maps x : Σ3 → Y from an arbitrary three-manifold to a G2 manifold are considered and a

functional which localizes on associative embeddings is defined. There a reference associative embedding

x0 is chosen and used to define a local coordinate splitting of xµ into tangential xa and normal yI parts.

This is different from the present situation where θI is an infinitesimal normal deformation of an associative

cycle. θI can be identified with a section of the normal bundle (via the tubular neighborhood theorem)

and is essentially a linear object, whereas the yI above are a local coordinate representation of a non-linear

map. Basically θI here are related to the linear variation δyI |x0
(evaluated at x = x0) in [5].
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Let us first consider the Q-closure of θI

φ b
Ic φ aJ

b ∂[aθJ ] = 0 . (4.10)

These are 24 equations depending on a choice of I and c. Examining the index struc-

ture, (4.10) reduces to 4 independent equations

φ aJ
b ∇aθJ = 0 , (4.11)

where we replaced the commutator of a derivative with the covariant derivative on M in

the induced metric.

Following [18], let us observe an isomorphism between the normal bundle NM of the

4-cycle M , and the space of self-dual 2-forms Λ2
+(M) on M , given by

θI → θIφIab ≡ Ωab , (4.12)

Ωab → φIabΩab = φIabφJabθ
J =

1

6
θI , (4.13)

where we have used the first identity in (A.3).

To see that Ωab is self-dual we use the second identity in (A.3) and the fact that

∗φ cd
ab ∝ ǫ cd

ab on M , so that

(∗4Ω)ab ∝ ∗φ cd
ab Ωcd = φ cd

ab θIφIcd =
1

6
φIabθ

I =
1

6
Ωab . (4.14)

Let us now use (4.13) to see what (4.11) implies for Ωab;

0 = φ aJ
b ∇aφ

cd
J Ωcd = ∇a

(

φ aJ
b φ cd

J Ωcd

)

= ∇a

[(

1

9
Ωba +

1

18
Ωba

)]

=
1

6
∇aΩba . (4.15)

This equation is just d†Ω = 0, and since Ω is self-dual, it also implies dΩ = 0 so that Ω

must be harmonic. Thus the Q-cohomology for the normal modes is given by θI which

map to harmonic self-dual 2-forms on M .

Since the Q†-cohomology on the normal modes is trivial (eq. (3.8) is trivially true for

normal directions), such θI are Q-closed and co-closed, and hence Q-harmonic. Thus their

Q-cohomology is isomorphic to the de Rham cohomology group H2
+(M) of harmonic self-

dual 2-forms on M . This corresponds to the geometric moduli space of deformations of a

coassociative 4-cycle, determined by McLean in [18].

4.3 Tangential modes

For the tangential modes the Q- and Q†-closure conditions are just (3.5) and (3.8) with all

the indices replaced by worldvolume indices a, b, c, . . . .

Associative 3-cycles. On the 3-cycle it is convenient to represent the Q-closure condi-

tion using the projector π2
7

in terms of φ which gives

φ c
ab φ

de
c ∂[dAe] = 0 . (4.16)
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When pulled back to the associative cycle, φ is proportional to the volume form and so

this is

ǫ c
ab ǫ

de
c ∂[dAe] = 0 , (4.17)

which is just multiple copies of the equation ∂[dAe] = 0. Therefore any tangential defor-

mation corresponds to a flat connection on the 3-cycle.

Requiring the deformation Aaψ
a be also be Q†-closed, and hence a harmonic repre-

sentative of Q-cohomology, implies (3.8), which can be viewed as enforcing a covariant

gauge condition.

Combined together this means that the Q-cohomology for tangential modes on M is

spanned by the space of gauge-inequivalent flat connections on M . This matches the result

for Lagrangian submanifolds in the A-model and also the results derived using κ-symmetry

for physical branes in [29].

Coassociative 4-cycles. On the 4-cycle it is easier to use the representation of Q-closure
((

δa
c δ

b
d − δb

cδ
a
d

)

+ 24(∗φ)ab
cd

)

∂[aAb]ψ
cψd = 0 , (4.18)

in terms of the 4-form ∗φ, which is now proportional to the volume form on M . Defining

Fab = ∂[aAb] to be the field strength of the U(1) gauge field, the equation above implies

(∗4F )ab = 12(∗φ)cdabFcd = −Fab . (4.19)

Thus Fab is constrained to be anti-self-dual (ASD) on M . Therefore any tangential defor-

mation on the 4-cycle is given by a gauge field with ASD field strength. Note an important

difference with the case of normal modes. In the latter case each θI is mapped uniquely to

a harmonic self-dual 2-form Ωab on M , so there are exactly b2+(M) such modes. In this case

however the tangential mode Aa is the potential for a gauge field with ASD field strength

(i.e. an (anti-)instanton configuration). Hence the tangential modes correspond to tangent

vectors on the moduli space of instanton configurations on M .

Again the condition ∇aA
a = 0 for Q†-closure is simply a gauge choice, implying that

each Q-harmonic representative is associated to a unique orbit of the gauge group (up to

Gribov ambiguity in the path integral). In fact, these harmonic constraints ∗4F = −F ,

d†A = 0 are precisely (linearized versions of) the conditions cited in equation (5.22) of [30]

as defining the deformations of an instanton configuration.

In physical string theory the anti-self-duality constraint on the field strength of a

coassociative brane has been determined in [29] using κ-symmetry of the DBI action.

In [31], a topological field theory is proposed on calibrated 4-cycles whose total moduli

space is a product of the moduli space of geometric deformations with the moduli space of

ASD connections on M . We will see shortly that this is indeed the worldvolume theory on

coassociative 4-cycles for the open G2 string.

5. Scattering amplitudes

Before considering the nature of the worldvolume theory of the calibrated 3- and 4-cycles, it

will be useful to consider some scattering amplitudes in the open G2 theory, as these can be
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compared with field theoretic scattering amplitudes and will help constrain the interaction

terms in the worldvolume action. In fact, as will be discussed in the next section, these

interactions can actually be related to string field theory, not just to effective field theory,

if one concedes that the G2 string is independent of its coupling constant, as argued in [8].

5.1 3-point amplitude

The simplest amplitudes to calculate (and the only ones we will need) are the 3-point func-

tions of degree one fields Aµψ
µ, which are essentially already calculated in [8]. Introducing

Chan-Paton factors into the calculation performed there gives the 3-point function of three

ghost number one fields as

λ3 3

2
fjik

∫

Y
φαβγ(x)Ai

α(x)Aj
β(x)Ak

γ(x) , (5.1)

where fijk are the structure functions for the Lie algebra of the gauge group G and λ is the

normalization of the bulk-boundary 2-point function in the G2 CFT (these are generally

not relevant and will not be treated with a great deal of care).

Tangential modes. For an associative 3-cycle embedding i : M → Y , we have the

relation i∗(φ) = ǫ, where ǫ is the volume form on M . If we now consider the previous

calculation but where now the fields ψµ are restricted to be along the 3-brane (so they

have indices a, b, c . . . ), we find that

〈AAA〉 = λ3 3

2
fjik

∫

M
ǫabc(x)Ai

a(x)A
j
b(x)A

k
c (x) . (5.2)

As will be discussed in the next section, this is an interaction vertex for Chern-Simons

theory, which is the part of the effective worldvolume theory for the 3-cycle.

As mentioned in previous section, on a coassociative 4-cycle φabc = 0 so the 3-point

function of tangential modes vanishes.

Normal and mixed modes. We can now try to consider a mixture of normal or tangen-

tial modes in the 3-point function. The boundary conditions on the openG2 string, preserv-

ing the extended algebra on a 3-cycle, imply [15] that only φabc and φIJc are non-vanishing.

Thus φ is only non-vanishing for an even number of indices in Dirichlet directions, so we

can only scatter two normal modes and one tangential mode. This gives

〈θθA〉 = λ3 3

2
fjik

∫

M
φIJc(x)θi

I(x)θ
j
J(x)Ak

c (x) . (5.3)

On a 4-cycle the non-vanishing components of φ have an odd number of normal indices,

and it is easy to see that the only non-vanishing 3-point functions of degree one modes are

〈θAA〉 = λ3 3

2
fjik

∫

M
φIab(x)θi

I(x)A
j
a(x)A

k
b (x) ,

〈θθθ〉 = λ3 3

2
fjik

∫

M
φIJK(x)θi

I(x)θ
j
J(x)θk

K(x) .

(5.4)
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6. Worldvolume theories

We have already determined the BRST cohomology of normal and tangential modes on 3-

and 4-cycles. These should be thought of as marginal deformations of the theory preserv-

ing the twisting on the worldsheet (by general arguments that map an element of BRST

cohomology to a descendant that can generate a deformation). When considered from the

spacetime perspective, the elements of BRST cohomology should translate into spacetime

fields and we expect the BRST closure condition to correspond to the linearized space-

time equations of motion. This is true in physical string theory and can be derived more

rigorously via open string field theory for topological strings, as will be reviewed below.

For the normal modes, the BRST cohomology condition can be translated into con-

straints on deformations of the calibrated submanifolds, such that these modes correspond

to tangent vectors on the moduli space of (co)associative cycles in the G2 manifold.

For tangential modes, the BRST cohomology condition looks different for the different

cycles. On the 3-cycle, BRST closure and co-closure of the tangential mode Aa imply

dA = 0 and d†A = 0, so that A is a flat connection in a fixed gauge, and we expect a gauge

theory whose solutions correspond to gauge-inequivalent flat connections. On the 4-cycle,

BRST closure and co-closure of Aa imply

∗4dA = −dA , d†A = 0 . (6.1)

These equations are the linearization of the condition for a variation of a gauge field

to be a deformation of an instanton solution (c.f. equation (5.50) in [30]). This suggests,

in analogy with the geometric moduli, that the theory on the worldvolume should be a

gauge theory extremizing on instantons and that marginal tangential deformations of the

worldsheet theory should correspond to tangent vectors on the moduli space of instantons.

In the case of both the 3- and 4-cycle, the worldvolume theory will include contributions

from the normal and tangential modes, and so should result in a theory whose moduli space

includes the normal and tangential deformations that we have determined in section 4. We

also expect that the other physical states, which are massless in the twisted theory, may still

play a role in the spacetime action even though they cannot be used to generate boundary

deformations of the CFT,11 and hence are not moduli of the theory.

To determine the relevant spacetime actions and how the normal and tangential moduli,

as well as the higher ghost number fields, come into play we will start by considering

Witten’s derivation of Chern-Simons theory from open string field theory (OSFT). We will

find that by restricting our attention to tangential modes on a calibrated 3-cycle we can

re-derive Witten’s Chern-Simons theory simply by following the arguments of [13]. We will

then attempt to generalize this derivation to include normal modes. Their contribution is

expected to be related to the topological theories in [5, 6], whose actions also localize on

the moduli space of associative 3-cycles (though, as we will see, this relation is mostly at

the level of equations of motion). Following a comment in [13], we expect the higher string

11Only a ghost number one state has a 1-form descendant with ghost number 0; ghost number p states

have p-form descendants with ghost number zero, so to preserve the ghost number in the worldsheet action

we would have to integrate them over a p-cycle on the worldsheet.
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modes to be related to additional fields generated by gauge-fixing the CS action. This is

discussed in appendix B.

Once we have transplanted Witten’s arguments for special Lagrangian branes in a

Calabi-Yau to associative branes in a G2 manifold, we will apply them to branes wrapping

coassociative cycles and branes wrapping all of Y .

6.1 Chern-Simons theory as a string theory

In [13] Witten argues that the open A-model on T ∗M reduces exactly to Chern-Simons

theory on M , for any 3-manifold M . There are several arguments supporting this claim

and we will attempt to generalize them below to the G2 case. Before doing so, we first

review them briefly.

The first argument concerns Q-invariance of a boundary term in the string path inte-

gral. In general the open string path integral can be augmented by coupling to a ‘classical’

background gauge field. This is done by including an additional piece in the integrand of

the path integral which is of the form

TrP exp

(
∮

∂Σ
X∗(A)

)

. (6.2)

Here A is a (non-abelian) connection defined on the brane M and the term above is a

Wilson loop for the pull-back of this connection along the boundary of the worldsheet Σ.

Requiring that this new term preserve the Q-invariance of the action implies that the field

strength F = dA+A∧A must vanish. Hence open strings in the A-model can only couple

to flat connections.

To more rigorously establish that the relevant spacetime theory is Chern-Simons theory,

Witten considers the OSFT action
∫

A ⋆ QA +
2

3
A ⋆A ⋆A , (6.3)

where A is a functional of the open string modes quantized on a fixed time slice, and

Q is the appropriate BRST operator of the theory. The integration measure is defined

by the path integral over the disc.12 The linearized equations of motion (coming from

the quadratic part of the OSFT action) enforce the requirement that physical states are

BRST-closed on-shell:

QA = 0 . (6.4)

In the large coupling constant limit (t→ ∞) theQ-cohomology can be studied by restricting

to functionals A that depend only on the string zero-modes, Xµ
0 and ψµ

0 . The BRST

operator, Q, acting on such states, reduces to the exterior derivative d on T ∗M (which we

can write in terms of the zero modes)

d = dxµ ∂

∂xµ
= ψµ

0

∂

∂Xµ
0

. (6.5)

12There is a subtlety here. In OSFT for the bosonic string this measure involves gluing together several

discs using conformal transformations, but in the setting of a topological theory all the states have conformal

weight zero under the twisted stress-tensor so they do not transform under conformal transformations.
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Since the t → ∞ limit is exact in the A-model (modulo world-sheet instantons which are

not present when the target space is T ∗M), these identifications are not approximations

but rather exact statements. This allows one to identify the string field action with Chern-

Simons theory.

To make this identification one must identify the string field A with the target space

gauge field Aµ(x)dxµ. The general form for A at large t is given by the expansion

A(Xµ, ψµ) = f(X0) +Aµ(X0)ψ
µ
0 + βµν(X0)ψ

µ
0ψ

ν
0 + Cµνρ(X0)ψ

µ
0ψ

ν
0ψ

ρ
0 , (6.6)

in 3 dimensions. The reason that A reduces to Aµ(X0)ψ
µ
0 is simply that only ghost num-

ber one string fields should be considered, and here ghost number coincides with fermion

number. Witten comments that it is possible to relate the other terms in the expansion

to ghost and anti-ghosts fields derived from gauge-fixing CS theory [32], or alternatively

gauge-fixing OSFT. In appendix B we will show that this is indeed the case when we repeat

this derivation on an associative cycle in a G2 manifold.

Witten provides a final argument for CS theory as the string field theory for the A-

model, namely that the open string propagator on the strip reduces to the CS propagator

in the large t limit. This is essentially the statement that b0
L0

= d†

�
. For the topological

string, b0 is replaced by the superpartner of the stress-energy tensor in the twisted theory

(i.e. Q† in T = {Q,Q†}). In the G2 case this would be (tentatively) G↑

− 1
2

[8].

We will now attempt to establish the validity of these arguments for the open G2 string

ending on a calibrated 3-cycle. Before doing so we should mention that what was missing

in this treatment is a discussion of the normal modes on the brane. It is not immediately

clear whether these modes modify the Chern-Simons action on the special Lagrangian cycle

(though one would imagine they should in order to capture the dependence of the theory

on the geometric moduli of the brane).

6.2 Chern-Simons theory on calibrated submanifolds

If we consider only the tangential modes on a calibrated cycle then the Q-closure conditions

become (in the free field approximation)

∂af(X) = 0 , (6.7)

ǫabc∂aAb = 0 ,

ǫabc∂aβbc = 0 , (6.8)

for the degree 0, 1, and 2 components of the string field. Here we have already used that

φabc ∝ ǫabc on the 3-cycle. This is consistent with the notion that Q = G↓

− 1
2

= d in the

large t limit. More generally, the complex (2.5), which encodes the BRST cohomology,

reduces, when restricted to the tangential directions on an associative 3-cycle, to the de

Rham complex so Q = d and Q† = d†.

Recall, from the discussion in section 2.3, that, in contrast to the situation in the A-

model, we do not have an explicit worldsheet action to work with and hence do not have

a Hamiltonian formulation which might directly establish the t invariance of the action.
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Assuming this invariance none-the-less, the equations above imply that the quadratic part

of the string field action reduces to the quadratic part of Chern-Simons theory. That is, in

the large t limit, the Q-closure constraint becomes the linearized CS equation of motion.

Here we have also considered modes with fermion number different from one; these will be

discussed in appendix B in relation to gauge-fixing Chern-Simons theory.

Also in this limit (of free string theory approximation), the Q†-closure constraints

become

∇aA
a = 0 ,

∇aβ
ab = 0 . (6.9)

The first term is just the gauge-choice d†A = 0. We will discuss the spacetime interpre-

tation of βab in appendix B and it will be clear why it satisfies this constraint. Let us now

translate the rest of Witten’s arguments to the G2 case.

The argument is essentially that open string field theory with the action (6.3) reduces

to Chern-Simons theory in the large t limit, if one restricts the string field to have ghost

number 1 (which, in the G2 case, translates into fermion number 1 because the ghost

number is the grading for the Q-cohomology, and that is given by the fermion number).

That this holds for the kinetic term follows because we have shown that the linearized CS

action is the same as the linearized Q-closure condition.

For the interaction term this just follows from the fact that the 3-pt function of the

ghost number one parts of A reduces to the wedge products of the Lie algebra valued

1-forms, Aa(x)dx
a. This is because, at large t, A depends only on the zero modes so the

ghost number one part has the form Aa(X0)ψ
a
0 which can be mapped to one-forms in

spacetime. We show in section 5.1 that the 3-pt function of these modes is just the 3-pt

correlator of CS theory.

Witten also shows that the propagator of the OSFT reduces, in the t → ∞ limit, to

the CS propagator. We will reproduce this argument briefly here for the G2 case. A much

more complete treatment (of the analogous A/B-model argument) can be found in section

4.2 of [13]. The open string propagator is simply given by the partition function of a finite

strip, of length T and width 1 with the standard metric

ds2 = dσ2 + dτ2 . (6.10)

In OSFT the moduli space of open Riemann surfaces is built by gluing such strips together.

The strip has one modulus, namely its length, so in calculating the partition function, one

insertion of G↑

− 1
2

folded against a Beltrami differential µ is required [8]

∫

dσdτ µ(σ, τ)G↑(σ, τ) . (6.11)

The Beltrami differential here is just given by a change to the metric that changes the

length of the strip and is given by a function f(τ) = δT · δ(τ − τ0) for any τ0 on the strip.

Here δT is the infinitesimal change in the length of the strip generated by this differential.
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Thus the insertion becomes
∫

dσdτ δT · δ(τ − τ0)G
↑(σ, τ) = δT

∫

dσ G↑(σ, τ0) . (6.12)

Because we have been working in the NS sector, the integral of the current G↑(z) around a

contour (given by fixed τ0 which maps to a half-circle in the complex plane) will just give

a G↑

− 1
2

insertion in the world-sheet path integral, so its overall form is

∫ ∞

0
DT

(

G↑

− 1
2

)

e−TL0 =
G↑

− 1
2

L0
. (6.13)

By our previous identification of G↑

− 1
2

with d† (this becomes d† on M for tangential modes)

and L0 with � in the large t limit, this becomes d†

�
which is the CS propagator [13]. One

should note that in the A-model this follows rather directly but in the G2 string it depends

on the fact that φabc ∝ ǫabc on the associative cycle (so, as previously mentioned, Q = Ď

reduces to d) and thus, in particular, might not hold on a coassociative cycle.

There is a final argument one can make in favour of CS theory, though it is more

heuristic. We want to argue, as Witten has, that coupling the worldsheet to a classical

background gauge field via a term such as (6.2) requires this background to satisfy F = 0

which is the equation of motion for Chern-Simons theory.

In [8], a heuristic version of the twisted G2 action is derived using the decomposition

of worldsheet fermions into ↑ and ↓ components, ψ = ψ↑ + ψ↓. This is heuristic because

this decomposition is essentially quantum and is not understood at the level of classical

fields. Using this decomposition we can check Witten’s argument for the BRST-invariance

of a boundary coupling to a classical configuration of the gauge field

TrP exp

(
∮

∂Σ
Aµ∂tX

µ

)

. (6.14)

The variation of this factor in the partition function under [Q,Xµ] = δXµ is given by

TrP

∮

∂Σ
δXµ∂tX

νFµνdτ · exp

(
∫

∂Σ;τ
Aµ∂tX

µ

)

, (6.15)

where the contour in the exponent must start and end at the point τ [13]. To make this

variation vanish requires that the first term vanish and since [8]

δXµ = iǫLψ
↓µ
L + iǫRψ

↑µ
R , (6.16)

this implies that Fµν = ∂[µAν] +[Aµ, Aν ] = 0 for classical configurations of the background

gauge field A. This is, of course, the Chern-Simons equation of motion.

In the physical theory one could also couple to a term of the form Cµνψ
µψν , but no

such terms seem to effect the derivation of F = 0 above in the A-model, because any such

coupling results in a variation which cannot cancel the gauge-field coupling.
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The only boundary term in a topological theory should be generated by the descent

procedure starting from a Q-closed ghost number one field whose descendent is a ghost

number zero one-form that is given by

{G↑

− 1
2

, Aµψ
µ} = Aµ∂tX

µ + π2
14

(∂µAνψ
µψν) . (6.17)

Both these terms have conformal weight 1 and, by virtue of a standard descent argument,

are Q-closed up to a total derivative. To apply Witten’s argument here it is necessary to

understand why the second term cannot appear on the boundary. This follows because we

are considering modes tangential to an associative cycle and one can check that on such a

cycle Λ2T ∗M ⊂ ι∗(Λ2
7(Y )) (here ι : M → Y is the embedding of the three cycle into the

ambient G2).

To derive the Chern-Simons action we have considered only the ghost number one part

of the string field A as this is the standard prescription in OSFT. In some cases, however,

it is desirable to consider the full expansion of A and include fields of all ghost number in

the action. This is because the higher modes just play the role of ghosts in gauge-fixing

the OSFT action [33]. This is a special feature of Chern-Simons like theories [32] and so

will apply for all the brane theories that we derive. We include an appendix B describing

the general form of the gauge-fixed actions for these theories that we will need when we

consider their one-loop partition functions.

6.3 Normal mode contributions

In the previous section we argued that the tangential modes of the G2 worldsheet corre-

spond to gauge fields in a CS theory on the 3-cycle and when higher string modes are

included this becomes gauge-fixed CS theory.

We are also interested in terms in the effective action that include the normal modes.

The most direct way to to get at a normal mode action is to simply expand the terms

A ⋆ QA and A ⋆A ⋆A in the OSFT action. Ignoring the higher string modes, we have

A = Aaψ
a + θJψ

J ,

QA = {Q,Aaψ
a} + {Q, θIψ

I}
= φIJcφ

cde∇dAeψ
IψJ + φabcφ

cde∇dAeψ
aψb + φaIJφ

JbK∇bθKψ
aψI .

(6.18)

Recall that the integration of expressions involving string fields, A, in the OSFT action

corresponds to evaluating the correlator of the integrand, decomposed in individual string

modes on the disc. In the G2 string only certain combinations of string modes will have a

non-vanishing 3-pt function depending on the conformal blocks the modes correspond to

(see [8]). In our calculation of the 3-pt functions above, this translates into non-vanishing

3-pt functions when we can contract the spacetime indices of the string modes with the

3-form φ. From our previous calculation of three point functions in sections 5.1 (see also

appendix B.1.2) we find the generic form of a 3-pt function on the disc

〈λω〉 =

∫

M
φµνρTr (λµωνρ) ,

〈αβγ〉 =

∫

M
φµνρTr (αµβνγρ) ,

(6.19)
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(where, e.g. ω = 1/2ωµν(x)ψµψν). Doing this gives the following action

Sdeg 1 =

∫

M
φabc Tr

(

Aa∇bAc +
2

3
AaAbAc

)

+ φIaJ Tr
(

θI(∇aθJ + [Aa, θJ ])
)

, (6.20)

where the trace Tr is over Lie algebra indices. The interaction terms can be calculated

directly in string perturbation theory by checking 3-pt disc amplitudes whereas the kinetic

terms coming from A ⋆ QA vanish in perturbation theory because on-shell string modes

satisfy QA = 0. To determine them we either simply consider all the terms of the correct

degree in the string mode decomposition of A⋆QA or ‘formally’ calculate 3-pt functions as-

suming the field A is off-shell. Both result in the same action and as a consistency check, the

linearized equations of motion for this action correspond to the BRST closure of the string

modes. We have not been too careful with the coefficients in (6.20) but this is because most

coefficients either follow from gauge invariance or can be absorbed into field redefinitions.

The equations of motion for this action are

ǫabcFbc = φIaJ [θI , θJ ] , (6.21)

φaIJ
(

∇aθJ + [Aa, θJ ]
)

= 0 . (6.22)

In the abelian case this just reduces to F = 0 and the geometric constraint (4.11) on

the normal modes describing associative deformations. In the non-abelian case this is no

longer true but of course in this setting we have lost the simple association of θI with

normal deformations of the brane, as the string modes become matrix-valued.

At first glance the equations above look similar in form to the Seiberg-Witten type

equations (32) and (40) in [28]. This reference is concerned with resolving the singular

structure of the moduli space of deformations of associative submanifolds in a general

G2 manifold by considering a larger space of deformations where one is allowed to also

deform the induced connection on the normal bundle to make the deformed submanifold

associative. This amounts to a choice of complex structure on the normal bundle, for each

deformation of the 3-submanifold, such that its reduced structure group U(2) ⊂ SO(4)

in the G2 manifold is compatible with the induced metric connection. This additional

topological restriction on the G2 manifold is something we have not assumed and indeed,

for general gauge group, there is no obvious relation between (6.21), (6.22) and the purely

geometric equations in [28].13

6.4 Anti-self-dual connections on coassociative submanifolds

We expect that the worldvolume theory on the 4-cycle should have equations of motion

corresponding to the BRST closure of the associated string modes. Let us consider the

following action

S[A, θ] =

∫

M
φIabTr

(

θIFab

)

+
2

3
φIJKTr

(

θIθJθK

)

. (6.23)

13It is possible that the U(1) part of our gauge connection could be related to the U(1) ⊂ U(2) part of

the induced connection on the normal bundle with fixed complex structure in [28].
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As with the action on a 3-cycle we cannot directly check the quadratic terms by considering

a string correlator because the relevant correlators vanish for on-shell states as dictated

by the fact that the quadratic terms in the action determine the BRST closure condi-

tion. Rather, we can compare the linearized equations of motion (generated purely by the

quadratic terms) and the string BRST closure condition and these should match.

The abelian θI equation of motion is now just φIabFab = 0, which implies anti-self-

duality of F and so matches the BRST closure condition. The Aa equation of motion is

φabIDbθI = 0 , (6.24)

where Da = ∇a + [Aa, ] on M . This equation is more conveniently expressed in terms of

the self-dual 2-form ωab = φabIθ
I on M . At the linear level, the equation above implies ω

is co-closed, and hence also closed since it is self-dual. Thus we have the correct linearized

condition for coassociative deformations found by McLean.

We can also consider the formal structure of the term A · QA in the OSFT action,

letting A go ‘off-shell’, and indeed we find matching.

As a further check we should compare the interaction term to string scattering ampli-

tudes. The 3-pt function for a general degree one vertex operator in the topological theory

is given by

λ3 3

2

∫

Y
φαβγ(x)Tr

(

Aα(x)Aβ(x)Aγ(x)
)

. (6.25)

On the 4-cycle the only non-vanishing components of φ must have an even number of

tangential indices, which implies the following non-vanishing amplitudes

λ3 3

2

∫

M
φIabTr

(

θIAaAb

)

,

λ3 3

2

∫

M
φIJKTr

(

θIθJθK

)

.

(6.26)

The first line above corresponds to the cubic interaction θAA in the first term of (6.23)

while second correlator in (6.26) implies the cubic vertex in the second term. This last

term, of course, only corrects the non-abelian instanton equation of motion

φIabFab = −φIJK [θJ , θK ] , (6.27)

and so has no effect on the geometric interpretation in the abelian case.

In [31] Leung proposes a 1-form on the space C = Map(M,Y ) ×A(M) where M is a

4-manifold, Y is a G2 7-manifold and A(M) is the space of Hermitian connections on the

gauge bundle E →M (with fibre G)

S(f,DE)(v,B) =

∫

M
Tr (f∗(ιvφ) ∧ FE + f∗(φ) ∧B) . (6.28)

Here (f,DE) ∈ C and (v,B) ∈ T(f,DE)C with v a section of TY , B ∈ Λ1(M, adG) and

FE the curvature of DE (here f is an element of Map(M,Y ) and should not be confused

with the f used to denote the zero fermion component of the string field). The one-

form S is invariant under diffeomorphisms of M and its zeros correspond to coassociative
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embeddings f(M) ⊂ Y with anti-self-dual connections on them. This follows from the

fact that S must vanish when evaluated on arbitrary vectors, B, implying f∗(φ) = 0, and

arbitrary v implying that FE = −∗FE .

To compare with our theory we do not want to consider the space of all such maps,

but only the local deformations of a given coassociative f(M) in Y , so we only consider

fluctuations around a fixed coassociative submanifold. Thus we will take f to be a coas-

sociative embedding implying that the second term in the action above vanishes and ∗φ
defines the volume form on the embedded coassociative 4-cycle f(M). Thus, we rewrite

Leung’s functional to generate the following action functional14

S0[A, θ] =

∫

M
Tr (f∗(ιθφ) ∧ F ) =

∫

M
φIabTr

(

θI (∂aAb +AaAb)
)

, (6.29)

using the identity ǫabcd φ
cdI = 2φ I

ab on the coassociative cycle.

Thus we see that the open G2 string has reproduced the action Leung suggested in

order to study SYZ in the G2 setting and it has also introduced an additional term that is

not present in Leung’s action.

6.5 Seven-cycle worldvolume theory

As in physical string theory, it is natural to expect the 3- and 4-cycle theory to look

like the dimensional reduction of a theory on the whole 7-manifold (which is trivially

calibrated by its volume form φ ∧ ∗φ). Lee et al [34], who propose theories closely related

to our 3- and 4-cycle theories, claim that this theory should be related to (deformed)

Donaldson-Thomas theory [19].

The 7-cycle theory can be determined exactly the same way as the 3- and 4- cycle the-

ory. For the interaction term we just calculate the 3-pt functions of the (ghost number one)

terms in 〈A ⋆A ⋆A〉 given by (6.19). The kinetic terms, defining the linearized equations

of motion, should correspond to QA = 0 and they should match A ⋆ QA.

This gives the following action

S =

∫

Y
φµνρTr

(

Aµ∂νAρ +
2

3
AµAνAρ

)

=

∫

Y
∗φ ∧ CS3(A) . (6.30)

The equation of motion for this action is

∗φ ∧ F = 0 . (6.31)

This is one of the equations in [19] where it is argued to be associated with the 7-dimensional

generalization of Chern-Simons theory. In the abelian theory this equation of motion is

simply ĎA = 0 which has no global solutions which are not exact (i.e. A = df) because

H1
7 (Y ) = 0 for G2 manifolds. Of course, as a gauge field A need not be a global one

form and then this result no longer applies. This is similar to the situation one finds for

Chern-Simons theory on a simply connected manifold.

14More precisely, Leung’s one-form, Φ0, descends to a closed one-form on the space ‘C/Diffeo(M)’ and

this form is locally the derivative of a functional, F , whose critical points are zeros of Φ0. Our action is

most closely related to this functional.
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Note that for the action (6.30) to be gauge invariant under large gauge transformations

∗φ must actually be an integral cohomology class. A similar issue arises in holomorphic

Chern-Simons theory as mentioned by Nekrasov in [2] but, as the three-form Ω is holo-

morphic, it is not clear that it can always be normalized to be integral. Nekrasov notes,

however, that the integrality condition is precisely the condition on the complex moduli of

the CY to be solutions of the attractor equations. It would be interesting to understand if

the integrality of ∗φ has a similar interpretation.

In [34] the authors want to consider solutions to the deformed Donaldson-Thomas

equation

∗φ ∧ F =
1

6
F ∧ F ∧ F , (6.32)

which would involve adding a term CS7(A) to the Lagrangian above. It is not at all clear

why such a term would appear in OSFT but in section 7 we see that such a term does

emerge in a rather interesting way when quantizing this theory.

6.6 Dimensional reduction, A- and B-branes

Reducing the open topological G2 string on CY3×S1 gives rise to both special Lagrangian

A-branes and holomorphic B-branes on CY3. This follows from the decomposition of φ and

∗φ in terms of the holomorphic 3-form and Kähler form on CY3 (see appendix A). The

A-branes arise when reducing the associative 3-cycle action (B.21) in the normal direction.

The resulting action
∫

M
ǫabcTr

(

Aa∇bAc +
2

3
AaAbAc

)

+ ρaijTr
(

θi(∇aθj + [Aa, θj ])
)

, (6.33)

is the real part of complex Chern-Simons theory, where the indices a, b, c = 1, 2, 3 are

in the SLag while i, j = 4, 5, 6 are in the normal direction. The normal modes appear

quadratically and can be integrated out (see section 7 for a discussion of this issue on an

associated cycle).

Similarly we can reduce the 4-cycle action (6.23) in the tangential direction. This is

again a special Lagrangian brane in CY3 but now calibrated by ρ̂ instead of ρ, and the

worldvolume action is given by the imaginary part of complex Chern-Simons theory
∫

M
ρiabTr(θiFab) +

2

3
ρijkTr(θiθjθk) , (6.34)

with the additional constraint Daθi = 0 for the normal modes.

The B-branes are simplest to find starting from the 7-cycle worldvolume theory (6.30)

and reducing on the CY3. We find

S =

∫

CY3

ρ̂ ∧CS(A) + k ∧ k ∧ Tr(λF )

=
1

2i

∫

CY3

Ω ∧ CS(A) − 1

2i

∫

CY3

Ω̄ ∧ CS(Ā) +

∫

CY3

k ∧ k ∧ Tr(λF ) ,

(6.35)

where ∗φ = ρ̂∧dt+ 1
2k∧k, t parametrizes the circle direction, Ω = ρ+iρ̂ is the holomorphic

3-form of the Calabi-Yau, and λ = At is the scalar component of the gauge field in the
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reduction. The action is the sum of B-model 6-brane and B̄-model 6-brane actions (the

appearance of the imaginary part of the holomorphic 3-form rather than the real part is just

a matter of convention). The extra term in the action comes with the Lagrange multiplier

λ, and so it expresses the constraint

k ∧ k ∧ F = 0 .

This extra condition is related to stability of the brane (complexifies the U(N) symmetry).

Lower-dimensional 4-branes and 2-branes then follow by further dimensional reduction,

where again we obtain B- and B̄-model actions together with a stability condition.

It is remarkable that like the closed topological M-theory, the open topological string

also contains the A and B+B̄ models. Perturbatively the B+B̄-models are decoupled, and

it would be interesting to understand if there is a non-perturbative coupling between them.

7. Gauge-fixing and quantization

Let us now consider the full expansion of the OSFT action without any constraint on the

ghost number of the fields. As found in appendix B.1, this gives the following expression

for the action in seven dimensions

S(7) =

∫

Y
φµνρ Tr

(

Aµ∂νAρ +
2

3
AµAνAρ + βµν∂ρf + βµν [Aρ, f ] +

1

2
Cµνρ{f, f}

)

=

∫

Y
∗φ ∧ Tr

(

A ∧ dA+
2

3
A ∧A ∧A+ β ∧Df +

1

2
C{f, f}

)

,

(7.1)

where f ∈ Λ0
1
, β ∈ Λ2

7
and C ∈ Λ3

1
are respectively the degree zero, two and three modes

of the string field A in the adjoint representation of the gauge group and D = d+A is the

gauge-covariant derivative. The purely bosonic (i.e. ghost number one field) part of the

action above has appeared (in conjunction with additional bosonic terms) in topological

quantum field theories studied in [35] and [36]. The interpretation of the action above in

terms of the Batalin-Vilkovisky antifield formalism is detailed in appendix B.1.

7.1 Weak coupling limit

To help us understand the structure of the gauge theories we have found for open strings

ending on (co)associative calibrated branes, we are more interested in the quantization

of the quadratic part of the non-linear action S[A] =
∫

Y ∗φ ∧ CS(A), expanded around

solutions of the classical equations of motion

∗φ ∧ F = 0 . (7.2)

The partition function of this simplified theory corresponds to a stationary phase

approximation of the full theory in the weak coupling limit. For the gauge theory on

associative 3-cycles, we will investigate how the normal modes modify the corresponding

calculation done by Witten [37] for pure Chern-Simons theory.

The equation ∗φ ∧ F = 0 has been considered already in [19] where it is argued to

be the 7-dimensional generalization of Chern-Simons theory that might provide an analog
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of Casson/Floer theory for 7-manifolds. It is related to an instanton equation for a gauge

field on the Spin(7) 8-manifold Y × R. This relationship is directly analogous to the way

solutions of the Chern-Simons equation of motion F = 0 on a 3-manifold M correspond to

critical points of the gradient flow equations coming from the instanton equations F = ∗F
on M × R. This fact will be important when we come to consider the non-trivial phase

factor in the path integral of this gauge theory.

Expanding S[A], for A = A0 + B, to quadratic order in B around a classical solution

A0 gives

S[A] = S[A0] +

∫

Y
∗φ ∧ Tr (B ∧DB) , (7.3)

where D = d+[A0, ] is here with respect to the background gauge field solving φµνρF 0
νρ = 0.

The linear term is of course absent since it gives the A0 equation of motion. Performing

the BV analysis of the quadratic action Scl[B] =
∫

Y ∗φ ∧ Tr(B ∧ DB) is straightforward

and is given in appendix B.1 (it is also related to a linearization of the structure described

for the full theory in appendix B.1).

The resulting gauge-fixed action takes the familiar form

∫

Y
∗φ ∧ Tr (B ∧DB) + Tr (ϕDµBµ + c̄DµDµc) , (7.4)

with ϕ acting as Lagrange multiplier imposing the gauge-fixing constraint in the action

while c̄, c correspond to the fermions from the Faddeev-Popov determinant.

Formally the analysis of this gauge theory in 7 dimensions has been almost identical to

Witten’s analysis of pure Chern-Simons in 3 dimensions. Indeed we can also use Schwarz’s

method of evaluating the partition function for degenerate quadratic classical actions to

obtain the contribution

exp(ikS[A0])
det(DµD

µ)
√

det(L)
, (7.5)

to the partition function of ik
∫

Y ∗φ∧CS(A) (in the weak coupling limit of large k) coming

from a given gauge-equivalence class of solutions A0 of ∗φ ∧ F = 0. We should stress that

the structure of the moduli space of solutions to ∗φ∧F = 0 is not understood so well as that

for flat connections in 3 dimensions. Witten [37] restricts attention to Chern-Simons theory

on 3-manifolds M with the property that the moduli space of flat connections, determined

by equivalence classes of homomorphisms from π1(M) to the gauge group G, be finite.

We do not know whether one can take the moduli space of gauge-inequivalent solutions of

∗φ ∧ F = 0 to be zero-dimensional by suitable choice of G2 manifold Y . Thus we cannot

say whether the partition function can be expressed as a finite sum over contributions of

the form above.

The operator appearing in the denominator above is defined L = ∗(∗φ ∧ D) + D∗
and is understood as an antisymmetric 8x8 matrix of linear differential operators mapping

Λ1
7
⊕Λ7

1
to itself. It follows by collecting Bµ and ϕ in the first two terms in the gauge-fixed

quadratic action into an 8-vector. One can check that this definition implies L is elliptic

and self-adjoint. It seems the natural generalisation of the elliptic self-adjoint operator
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L− = ∗D+D∗ (restricted to forms of odd degree in 3 dimensions) used by Witten in [37].15

Another technical point we are overlooking is whether L = ∗(∗φ ∧ D) + D∗ is a regular

operator. We need not get into the precise definition, sufficed to say that regularity of an

operator guarantees one has a precise definition of its determinant in terms of regularised

zeta functions.

As explained in [37], the contribution to the partition function of Chern-Simons theory

in 3 dimensions around a given flat connection at weak coupling is closely related to the

partition function of an abelian 1-form gauge theory in 3 dimensions, which has been

explicitly calculated by Schwarz and shown to give the Ray-Singer analytic torsion of

the de Rham complex of the 3-manifold, and is thus a topological invariant. However,

this relation to Ray-Singer torsion is generally only guaranteed for topological actions of

the form
∫

ω ∧ dω, where ω is a bosonic/fermionic p-form of odd/even degree in (2p +

1) dimensions. Thus we should not expect the partition function of the 7-dimensional

quadratic theory above to be obviously related to Ray-Singer torsion. On the other hand,

since we are still in odd dimension, a theorem of Schwarz [38] does suggest the partition

function for this gauge theory should be a topological invariant. In fact this statement

is only true modulo possible obstructions related to non-trivial phase factors that we will

now discuss.

7.2 Phase of the determinant

An important subtlety in both 3 and 7 dimensions is the role of the phase of the determinant

of the operator L. The theories described by Schwarz are insensitive to this since they

compute absolute values of ratios of determinants of elliptic operators. The Laplacian

DµD
µ appearing in the numerator is real and positive-definite so there is no possible phase

coming from its determinant. We will now investigate the structure of this phase for the

7-dimensional theory.

The expression for the phase in terms of the Atiyah-Patodi-Singer η-invariant follows

in the same way in both 3 and 7 dimensions; as the limit of a series in powers of the non-

zero eigenvalues λi of the operator L (at a given background solution A0 of ∗φ ∧ F = 0).

In particular, as in [37], we find

1
√

det(L)
=

1

|
√

det(L)|
exp

(

iπ

2
ηL(A0)

)

, (7.6)

where

ηL(A0) =
1

2
lim
s→0

∑

i

signλi |λi|−s , (7.7)

denotes the η-invariant for the elliptic operator L at solution A0.

15In both dimensions 3 and 7, the addition of the D∗ term in L is essential in order for it to be elliptic.

This is simply because without it the Pfaffian of the corresponding antisymmetric symbol matrices of odd

rank would vanish identically and so there could exist no inverse. The way of understanding the need for

ellipticity in physics terms is that we require the kinetic operator in the quadratic action to be the inverse

propagator. The propagator only exists for the gauge-fixed action.
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In 3 dimensions Witten [37] uses the Atiyah-Patodi-Singer index theorem for the clas-

sical twisted spin complex (L− can be interpreted as a twisted Dirac operator) to compute

the difference of η-invariants between two flat connections, A = A0 and A = 0, to be pro-

portional to the Chern-Simons action
∫

M CS(A0) itself at A0. The proportionality factor is

the dual Coxeter number h(G) of the gauge group G. This has the beautiful interpretation

of the level shift k → k+h(G) in the quantum Chern-Simons action, that one also observes

for current algebras of conformal field theories in 2 dimensions.

The identification of L− = ∗D + D∗ in 3 dimensions with a twisted Dirac operator

follows by collecting the differential operators in L− into a 4x4 antisymmetric matrix acting

on the 4-dimensional vector space Λ1 ⊕ Λ3. This allows one to write L− = γaDa in terms

of the 3 4x4 antisymmetric matrices γa, with components (γa)bc = −ǫabc, (γa)b4 = −δab.

These matrices generate a subgroup SU(2) ⊂ SO(4) and in an appropriate basis can be

written Γa = iσ2 ⊗ σa (in terms of Pauli matrices σa). Together with Γ4 = iσ1 ⊗ 1, they

generate a representation of the Clifford algebra acting on Dirac spinors in 4 dimensions.

By constructing the interpolating gauge field A(t), for t ∈ [0, 1] on M× [0, 1] between 2 flat

gauge fields A(1) = A1 and A(0) = A0 on M , this provides a suitable lift of L− on M to

the twisted Dirac operator L̃− = ΓaDa(A(t))+Γ4∂t on M × [0, 1]. It is the Atiyah-Patodi-

Singer index theorem for L̃− that allows Witten to compute the change in ηL−
between 2

flat connections.

We will now show that a similar structure follows for L = ∗(∗φ ∧D) +D∗ in 7 dimen-

sions. Again collecting the differential operators in L into an 8x8 antisymmetric matrix

acting on the 8-dimensional vector space Λ1 ⊕Λ7 allows one to express L = γµDµ in terms

of the 7 8x8 antisymmetric matrices γµ, with components (γµ)νρ = −φµνρ, (γµ)ν8 = −δµν .

It should be noted that the sub-matrices (γµ)νρ do not form the adjoint representation of

the imaginary octonions despite the fact that they are identical to the structure constants

of this algebra. This is simply because the octonions are not associative. This is to be con-

trasted with the submatrices (γa)bc in 3 dimensions which give the adjoint representation

of the imaginary quaternions (i.e. the Lie algebra of SU(2)). Nonetheless, together with

γ8 = i1, the full 8x8 matrices γµ generate a representation of the Clifford algebra acting on

Weyl spinors in 8 dimensions. The corresponding action on Dirac spinors in 8 dimensions

can be expressed in terms of the 16x16 anti-Hermitian matrices Γµ = σ2⊗γµ, Γ8 = iσ1⊗1.

Thus by constructing the interpolating gauge field A(t) on Y × [0, 1] between 2 solutions

A(1) = A1 and A(0) = A0 of ∗φ ∧ F = 0 on Y we have a suitable lift of L on the G2

manifold Y to the twisted Dirac operator L̃ = ΓµDµ(A(t)) + Γ8∂t on Y × [0, 1].

Before obtaining the change in ηL from the Atiyah-Patodi-Singer index theorem for L̃,

it may be illuminating to make a brief digression explaining how this lift of L is related to

the elliptic complex

0 −→ adG⊗ Λ0 D−→ adG⊗ Λ1
1
4
(1−∗Ψ∧)D−→ adG⊗ Λ2

7
−→ 0 , (7.8)

on an 8-manifold X of Spin(7) holonomy, with Cayley 4-form Ψ = ∗Ψ, when X = Y × [0, 1].

This complex has been used in the study of 8-dimensional topological quantum field theories

in [35]. The operator π2
7

= 1
4(1 − ∗Ψ∧) projects the 2-form in 8 dimensions onto the 7-

dimensional irreducible representation of Spin(7). The adjoint operators mapping to the
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left of the complex are D†. As noted by Donaldson and Thomas, solutions of ∗φ ∧ F = 0

on the G2 manifold Y correspond to fixed points of the gradient flow from the Spin(7)

instanton equation ∗F = Ψ ∧ F on Y × R (i.e. elements of the kernel of π2
7
D).

The relation of this complex to the twisted spin complex for L̃ follows by observing

the isomorphisms S+ = Λ0
1
⊕ Λ2

7
and S− = Λ1

8
for the positive and negative chirality

spin bundles S± on a Spin(7) manifold (using the conventions of [36] where the Spin(7)-

invariant spinor θ ∈ S+). The explicit isomorphisms following from Fierz identities give

ψ+ = ηθ − 1
4χMNΓMNθ and ψ− = −ψMΓMθ (M,N = 1, . . . , 8) for any ψ± ∈ S±, where

η = θtψ+ is a scalar, χMN = 1
2θ

tΓMNψ+ is a 2-form obeying the identity π2
7
χ = χ and

ψM = θtΓMψ− is a 1-form. The action of the twisted Dirac operator ΓMDM : S− → S+ on

these expressions gives ΓMDMψ− = (DMψM )θ− (π2
7
Dψ)MNΓMNθ hence equating ΓMDM

acting on S− with π2
7
D+D† acting on Λ1

8
in the complex above. This is consistent with the

reduction of the lifted L̃ on Y × [0, 1] to L = ∗(∗φ∧D)+D∗ on Y . Using this identification,

one can check that the index of the whole Spin(7) complex above is identical to that for

the twisted Dirac operator on a Spin(7) manifold.

This identification has been used by Reyes-Carrión [23] to calculate the Atiyah-Singer

index
∫

X
ch(adG)Â(TX)=

∫

X
dim(G)Â2(TX)+

1

24

(

p1(TX)∧c2(adG)+2(c2(adG))2−4c4(adG)
)

,

(7.9)

of the Spin(7) complex above, on a closed Spin(7) 8-manifold X. The A-roof genus
∫

X Â2

here corresponds to the number of parallel spinors on X and so equals 1 if the holonomy

is exactly Spin(7) (and not a subgroup thereof). For convenience, it is assumed in the

formula above that the gauge group is chosen such that the Chern classes c1(adG) and

c3(adG) both vanish (e.g. for G = SU(N)).

Consider now X = Y × [0, 1] where A(t) interpolates between two solutions A = A0

and A = 0 of ∗φ ∧ F = 0 on Y . The Atiyah-Patodi-Singer index theorem for L̃ is

ind(L̃) =

∫

Y ×[0,1]
ch(adG)Â(T (Y × [0, 1])) − 1

2
[ηL(A0) − ηL(0)] . (7.10)

The bulk integral can be evaluated using the Reyes-Carrión result on X = Y × [0, 1].

This is equal to the continuous part of 1
2 [ηL(A0) − ηL(0)] and is given by

dim(G) +
1

24

(

1

2π

)4 ∫

Y

[

−1

2
Tr(R ∧R) ∧ CS3(A

0) + CS7(A
0)

]

, (7.11)

as an integral over the G2 manifold Y with Riemann curvature R. The Chern-Simons

forms are

CS3(A) = Tr

(

A ∧ dA+
2

3
A3

)

,

CS7(A) = Tr

(

A ∧ (dA)3 +
16

5
A3 ∧ (dA)2 +

4

5
A2 ∧ dA ∧A ∧ dA+ 2A5 ∧ dA+

4

7
A7

)

.

(7.12)
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In general 1
2 [ηL(A0) − ηL(0)] can also have a discontinuous contribution, corresponding to

the spectral flow of L, and is equal to (minus) the index of the lifted operator L̃ itself. This

has the effect of shifting the continuous part of 1
2 [ηL(A0)− ηL(0)] by ±1 if the eigenvalues

λi(t) of L(A(t)) (understood as a function of t) change sign when t is varied between 0 and

1 (a +1 shift corresponds to a change λi < 0 to λi > 0).

The addition of ‘constant’ terms (that do not depend on the particular choice of solu-

tions A1 and A0) to 1
2 [η(A1) − η(A0)] will have a trivial effect that can be factored out of

the overall phase structure of the theory and ignored. Thus the effect of the spectral flow

of a given operator can only be ignored if it is a constant in this sense. This is the case

for Witten’s analysis of L− in 3 dimensions. This is obviously also true for the constant

dim(G) in the change in the η-invariant above. It is not clear to us whether the effect of the

spectral flow of L in 7 dimensions will be significant and we will overlook this subtlety here.

Therefore it is clear that the phase structure of the 7-dimensional theory is much

more complicated than just the level shift that occurs in 3 dimensions. Nonetheless, let us

examine some of the terms in 1
2 [ηL(A0) − ηL(0)] in a bit more detail.

The term Tr(R ∧R), proportional to the first Pontrjagin class of Y , which ordinarily

can be a general element of H4(Y,R), is here somewhat constrained due to the fact that Y

must have holonomy in G2. In particular, this constrains the curvature such that π2
7
R = 0

(or Rµναβφ
αβγ = 0 in components) so that the holonomy algebra is contained in the Lie

algebra of G2. Decomposing

H4(Y,R) = H4
1
(Y,R) ⊕H4

7
(Y,R) ⊕H4

27
(Y,R) , (7.13)

into irreducible representations of G2, one can check that the constraint above implies

Tr(R ∧ R) has no 7 part. (This also follows from lemma 1.1.2 in [39], although only

compact manifolds with full G2 holonomy are considered there and so one has the stronger

constraint b4
7

= 0 which we need not assume here.)

The cohomology group H4
1
(Y,R) = R has a very simple structure, being spanned

by constant multiples of the harmonic 4-form ∗φ. Moreover, one can prove the identity

Tr(R∧R)∧φ = −|R|2 vol implying the constant multiplying the 1 part of the first Pontrjagin

class is negative definite and vanishes only if the G2 metric is flat (this also follows from

lemma 1.1.2 in [39]). Hence the contribution to the expression for η above coming from

this term will cause a positive shift in the effective coupling constant k for the action
∫

Y ∗φ ∧ CS(A0), reminiscent of the level shift in 3-dimensional Chern-Simons theory.

The final contribution to the first Pontrjagin class coming from H4
27

(Y,R) is more

complicated and generally will not vanish. Recall it is precisely elements of H3
27

(Y,R) =

H4
27

(Y,R) that parameterize deformations of a given G2 manifold such that the deformed

manifold is also G2. Hence this contribution would vanish for ‘rigid’ G2 manifolds with

no deformation moduli (or, of course, for special G2 manifolds whose first Pontrjagin class

has no 27 part).

The effect on the partition function from the contribution to ηL from CS7(A
0) is

also rather complicated. We will simply note that the equations of motion arising from a
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modification to the classical action of this kind would be of the form

∗φ ∧ F = λF ∧ F ∧ F , (7.14)

for some constant λ, which were considered by Leung et al as a deformed version of

Donaldson-Thomas theory.

Just as in 3 dimensions, we expect that the overall ηL(0) exponential prefactor in

the partition function will not be a topological invariant. The task of finding a different

regularisation that preserves general covariance is much more difficult in 7 dimensions and

we will not attempt this here.

7.3 3-cycle worldvolume theory

Let us now repeat the analysis of the previous section as far as possible to describe the

quantization of the 3-cycle theory. The effective action for this theory

S(3) =

∫

M
ǫabcTr

(

Aa∂bAc +
2

3
AaAbAc + βabDcf +

1

2
Cabc[f, f ]

)

+ φaIJTr (θIDaθJ + 2βaI [θJ , f ]) ,

(7.15)

(derived from OSFT in appendix B.2) is essentially pure Chern-Simons theory for the gauge

field Aa on M , which is a completely solvable theory, plus additional normal mode contri-

butions from θI , whose effect we shall investigate (Da = ∇a + [Aa,−] on M). It can also

be understood as the dimensional reduction of the 7-cycle action S(7) (after appropriately

rescaling β and C).

In principle a similar modification by normal modes may occur for open strings ending

on special Lagrangian 3-cycles in Calabi-Yau manifolds in the A-model, though this is not

discussed in [13]. There is considerable evidence, however, that the worldvolume theory

on a special Lagrangian is essentially just Chern-Simons theory (up to possible worldsheet

instanton corrections), as this is used, for instance, in open-closed transitions [40]. An

essential point is that, aside from Aa, none of the other fields in the 3-cycle action appears

at higher than quadratic order in the Lagrangian so they can be integrated out exactly.

7.3.1 1-loop partition function

Let us again simplify matters by quantizing the quadratic part of the non-linear action

S(3), expanded around solutions of the equations of motion (6.21), (6.22) for the classical

part S[A, θ] =
∫

M CS(A) + φaIJTr(θIDaθJ) of S(3).

Expanding S[A, θ], for Aa = A0
a +Ba, θI = θ0

I +ξI , to quadratic order in (B, ξ), around

a classical solution (A0, θ0) gives

S[A, θ] = S[A0, θ0] +

∫

M
ǫabcTr (BaDbBc) + φaIJTr

(

ξIDaξJ + θ0
I [Ba, ξJ ]

)

, (7.16)

where Da = ∇a + [A0
a,−]. The BV structure of the quadratic action

Scl[B, ξ] =

∫

M
ǫabcTr(BaDbBc) + φaIJTr(ξIDaξJ + θ0

I [Ba, ξJ ]) , (7.17)

– 35 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
2

is detailed in appendix B.2. The resulting gauge-fixed action takes the expected form

Scl[B, ξ] +

∫

M
Tr (ϕDaB

a + c̄DaD
ac) . (7.18)

To compare this quantum theory with Witten’s analysis of pure Chern-Simons theory, let

us begin by calculating the contribution to the path integral from a flat connection (i.e.

A0 is flat and θ0 = 0, solving (6.21) and (6.22)). The modification to equation (2.8) of [37]

(for the contribution from a flat connection A0 in pure Chern-Simons theory) due to the

normal modes is given by

µ(A0, 0) = exp(ikS[A0, 0])
det(DaD

a)
√

det(L− ⊕ φaIJDa)
, (7.19)

where φaIJDa is understood as a 4x4 antisymmetric matrix of differential operators. We

can go further by making use of the important identity φaIJDaφ
bJKDb = −δIKDaD

a,

which follows using F 0
ab = 0. This is related to the fact that φaIJ , understood as 3 4x4

matrices, generate an SU(2) subgroup of the SO(4) structure group of the normal bundle

of M and can be understood as Pauli matrices. This allows us to identify φaIJDa as a

twisted Dirac operator acting on a 4-dimensional vector space, just as Witten did for L−.

Hence going through the usual Atiyah-Patodi-Singer analysis of the phase factor for the

direct sum of two identical twisted spin complexes over M × [0, 1] (both twisted by A0)

implies the difference of η-invariants between 2 flat connections A = A0 and A = 0 will also

be proportional to the pure Chern-Simons action at A0. Hence this will give essentially the

same 1-loop effective action as for pure Chern-Simons theory except the shift in the level

will effectively be doubled.

Understanding the effect of contributions from more general solutions of (6.21)

and (6.22) is a more difficult task since not much is known about this moduli space

other than that it contains flat connections. Formally the contribution from a general

solution µ(A0, θ0) will be similar to µ(A0, 0) but for replacing S[A0, 0] by S[A0, θ0] in the

exponential and including an off-block-diagonal component φaIJθ0
J for the determinant in

the denominator. It may prove more convenient to understand such contributions from

the 7-dimensional perspective.

7.4 4-cycle worldvolume theory

The action (6.23) also follows from reduction of the 7-dimensional action
∫

Y ∗φ∧CS(A) on

the 4-cycle. The ghost structure of this theory is derived from OSFT in appendix B.2, just

as for the 3-cycle theory, and again follows from dimensional reduction of the 7-dimensional

theory (up to suitable field re-scalings) to give the full 4-cycle action

S(4) =

∫

M
φIabTr

(

θIFab

)

+
2

3
φIJKTr

(

θIθJθK

)

+
1

2
φIJKTr

(

CIJK [f, f ]
)

+ 2φIabTr
(

βIaDbf
)

+ φIJKTr
(

βIJ [θK , f ]
)

.

(7.20)
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7.4.1 1-loop partition function

Proceeding as in the previous sections, we quantize the quadratic part of S(4) by expanding

around solutions of (6.24), (6.27) for the classical part of S(4)

S[A, θ] =

∫

M
φIabTr

(

θIFab

)

+
2

3
φIJKTr

(

θIθJθK

)

. (7.21)

Expanding S[A, θ], for Aa = A0
a +Ba, θI = θ0

I + ξI , to quadratic order in (B, ξ), around a

classical solution (A0, θ0) gives

S[A, θ] = S[A0, θ0] + 2

∫

M
φIabTr

(

ξIDaBb + θ0
IBaBb

)

+ φIJKTr
(

θ0
IξJξK

)

, (7.22)

where Da = ∇a + [A0
a,−]. The BV analysis of the quadratic action

Scl[B, ξ] =

∫

M
φIabTr

(

ξIDaBb + θ0
IBaBb

)

+ φIJKTr
(

θ0
IξJξK

)

(7.23)

is given in appendix B.2, leading to the expected gauge-fixed action

Scl[B, ξ] +

∫

M
Tr (ϕDaB

a + c̄DaD
ac) . (7.24)

We will now begin to analyse the quantum structure of this theory by calculating the

contribution to the path integral from an instanton configuration (i.e. A0 obeys φIabFab = 0

and θ0 = 0, solving (6.24) and (6.27)). The contribution is given by

µ(A0, 0) =
det(DaD

a)

det(φabIDb ⊕D∗) , (7.25)

where φabIDb is understood as a 4x3 matrix of differential operators which, together with

D∗ acting on 4-forms, makes up a square 4x4 antisymmetric matrix that provides an

involutive mapping Λ0(NM)⊕Λ4(M) → Λ1(M). The reason there is no square root in the

denominator is that the differential operator appearing in the gauge-fixed action is an 8x8

matrix (acting on Ba, ξI and ϕ) with zeros in the 4x4 block-diagonal entries and the 4x4

operators above in both off-block-diagonal entries. It is not clear to us if this determinant

can be simplified further or whether it contributes a non-trivial phase factor. The structure

of θ0
I 6= 0 contributions is also unclear.

8. Remarks and open problems

So far in this paper we have determined the spectrum of the open G2 string and related it

to the worldvolume field theories of branes in a G2 manifold. In this section we would like

to conclude by making some final remarks regarding issues that still need to be resolved as

well as interesting directions for further research.
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8.1 Holomorphic instantons on special Lagrangians

In dimensionally reducing the G2 branes on a Calabi-Yau Z times a circle, we have found

that we almost reproduce the real versions of the gauge theories for the open A- and B-

models. There is a discrepancy, however. If one considers a special Lagrangian M ⊂ Z,

with holomorphic open curves Σ ⊂ Z ending on M so that ∂Σ ⊂ M , then the A-model

branes will receive worldsheet instanton corrections to the standard Chern-Simons action.

A naive dimensional reduction of the associative theory on a G2 manifold Y = Z×S1 gives

a special Lagrangian in Z with the Chern-Simons action without instanton corrections.

This issue is already present in the closed topological G2 string. When reducing on

CY3 × S1, the closed G2 string gives a combination of A and B+B̄ models. But it is

non-trivial to see where the worldsheet instanton corrections in the A-model would come

from, given that the G2 theory appears to localize on constant maps. A possible resolution

suggested in [8] is that since, unlike a generic G2 manifold, the manifold CY3 × S1 has

2-cycles, worldsheet instantons may now wrap these 2-cycles. However, upon closer inspec-

tion, this possibility appears rather unlikely. A much more straightforward explanation is

that the worldsheet instanton contribution is due to topological membranes (i.e. topolog-

ical 3-branes of the type discussed in this paper) that wrap associative cycles of the form

Σ × S1 in CY3 × S1. Such 3-cycles are indeed associative as long as Σ is a holomorphic

curve in the Calabi-Yau manifold.

Returning to the open worldsheet instanton contribution to branes in the A-model,

there are two ways to obtain these from the topological G2 string on CY3 × S1. The first

way is to lift the A-model brane together with the open worldsheet instanton to a single

associative cycle in CY3 × S1. This is similar to the M-theory lift in terms of a single M2-

brane of a configuration of a fundamental string ending on a D2-brane in type IIA string

theory. To describe it, we take a special Lagrangian 3-cycle C in a Calabi-Yau manifold

X, plus an open holomorphic curve Σ. We denote the boundary of Σ by γ ⊂ C. We first

lift C to X × S1, which we describe in terms of a map C → X × S1 which takes x ∈ C

to (x, θ(x)) ∈ X × S1. Here, θ(x) describes an S1-valued function on C which we want

to have the property that it winds once around the S1 as we wind once around the curve

γ ⊂ C. The lift is therefore one-to-many, as the image of a point in γ is an entire circle,

and because of this the lift of C is an open submanifold of X × S1 with boundary γ × S1.

We can now glue the naive lift of Σ, which is Σ × S1, to the lift of C to form a closed

3-manifold M , since the boundary of Σ × S1 is also γ × S1. In this way we have obtained

a closed 3-manifold M ⊂ X × S1 which projects down to C and Σ upon reduction over

the S1. The 3-manifold M is not calibrated, but we can compute the integral of φ over

M . The result is simply
∫

C ρ+
∫

Σ k if we normalize the size of the S1 appropriately. The

fact that the lift of C winds around the circle does not yield any additional contribution

to
∫

M φ because the restriction of k to C vanishes identically.

We have thus constructed a closed 3-cycle M such that the integral of φ over it has

the correct structure, geometrically, to yield the worldsheet instanton contribution. The

final step is to minimize the volume of M while keeping its homology class fixed. This will

not change
∫

M φ but presumably lead to the sought-for associative 3-cycle with the right
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properties.

In order to push this program further and relate
∫

Σ k to the (exponentiated) weight

of a holomorphic instanton we note that maps θ(x) which wind about γ n times will

generate contributions such as n
∫

Σ k. Carefully summing over all lifts of this form with

the appropriate weight might properly reproduce the instanton contributions.

An entirely alternative approach is to lift both C and Σ to C × S1 and Σ × S1. In

this way we obtain an open associative 3-cycle ending on a coassociative 4-cycle in X×S1.

To analyze whether this makes sense, we consider the simple example of an open 3-brane

in R
7 stretched along the 123-direction, ending on a coassociative cycle stretching in the

2345-direction. If we vary the action (6.20) on the 3-brane we obtain a boundary term

Sboundary =

∫

dx2dx3tr(A3δA2 −A2δA3 + θ5δθ4 − θ4δθ5 + θ7δθ6 − θ6δθ7) . (8.1)

We obviously want Dirichlet boundary conditions for θ6 and θ7 so that the endpoint of the

open 3-brane is confined to lie in the 4-brane. We also want θ4 and θ5 to be unconstrained

at the boundary. If we therefore choose the boundary condition

A2 = θ5 A3 = θ4 , (8.2)

the variations all cancel. To preserve these boundary conditions under a gauge trans-

formation, we need to restrict the gauge parameter in such a way that its derivatives in the

2, 3 vanish at the boundary. In this way we indeed find a consistent open 3-brane ending

on a 4-brane.

8.2 Extensions

The actions we have discovered on topological branes wrapping cycles in a G2 manifold are

variants of Chern-Simons theories derived from OSFT. OSFT itself, as a generator of per-

turbative string amplitudes, might need to be augmented by terms that are locally BRST

trivial but none-the-less have global meaning deriving from the topological structure of the

space of string fields. In the bosonic open string such questions are currently inaccessible

but in the topological case we see some motivation for local total derivative terms to be

added to the action. One such potential term is
∫

Y
F ∧ F ∧ φ (8.3)

that might describe lower dimensional branes dissolved in the seven dimensional brane.

Such terms might be motivated by analogy with the Wess-Zumino terms on physical branes.

Note, also, that this reduces to F ∧ F ∧ k in six-dimensions, a term which appears in the

A-model Kähler quantum foam theory [41] which Nekrasov suggests should be related to

holomorphic Chern-Simons theory [2] (the latter is, of course, related to our theory by

dimensional reduction). It would be interesting to try and probe for the existence of such

terms directly in the G2 world-sheet or OSFT theory.

The appearance of the CS7(A) term in the one-loop partition function suggests that

perhaps this term appears in quantizing the theory and so should have been included in

the original classical action.
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Understanding if such terms do actually appear in these effective actions is interesting

as it may play a role in the conjectured S-duality of the A/B model topological strings.

In the latter it seems that one may need to consider both the open and closed theory

simultaneously and then terms such as (8.3) might play a role in coupling these theories.

8.3 Relation to twists of super Yang-Mills

The theories we have found on G2 branes are all topological theories of the Schwarz type

(see [30] for the terminology) which is no doubt linked to the fact that they are generated

by OSFT. A similar statement holds for branes in the A- and B-model.

The worldvolume theory on a brane in a G2 or Calabi-Yau manifold in a physical model

is a twisted, dimensionally reduced super Yang-Mills (SYM) theory [42] whose ground states

are topological in nature. These are related to the topological field theories that can be con-

structed by twisting SYM and considering only the supersymmetric states (by promoting

the twisted supercharge to a BRST operator). Such theories include the topological action

for Donaldson-Witten theory [43] as well as its generalizations to higher dimensions [35].

These are generally field theories of the Witten type meaning that the action is itself a

BRST commutator plus a locally trivial term.

Aside from the obvious connection to Chern-Simons theory via OSFT it would be

interesting to understand why the topological theories on branes in topological string theory

are generally of the Schwarz type (which are locally non-trivial) while the supersymmetric

states of the twisted theories on a physical brane can be studied in a theory that is of the

Witten type.

8.4 Geometric invariants

One of the most interesting open directions is to investigate the geometric or topological

invariants our open worldvolume gauge theories compute, and perhaps use them, via open-

closed duality, to discover the connection to the closed topological G2 theory. It would be

interesting to explore the full quantum open string partition function on a few examples

of G2 manifolds. The theory on the 3-cycle is basically Chern-Simons theory, while on

the 4-cycle the gauge theory of ASD connections will be related naturally to Donaldson

theory. It would very interesting to find a role for the partition functions in terms of the full

physical string theory, as well as deepen connections with the mathematics results in [31].

Another open problem is to analyze these invariants in the special case of CY3 × S1, and

find a physical understanding of related mathematical invariants such as the one proposed

by Joyce [44] counting special Lagrangian cycles in a Calabi-Yau manifold.

8.5 Geometric transitions

Open-closed duality techniques have proven very useful for topological string theory on

Calabi-Yau manifolds. In particular, geometric transitions provide nice examples where

closed topological string amplitudes can be computed from the gauge theory on the branes,

which in this case is just Chern-Simons theory with possible worldsheet instanton correc-

tions. Geometric transitions on G2 manifolds in general are less studied, but interesting
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examples from the full string theory point of view are exhibited in e.g. [45, 46]. In the

present paper we derived the relevant worldvolume gauge theory actions from open topo-

logical strings and so, one of the immediate applications of our results is to study geometric

transitions from the topological G2 string point of view.

8.6 Mirror symmetry for G2

Mirror symmetry on a Calabi-Yau 3-fold can be described in terms of the Strominger-

Yau-Zaslow (SYZ) conjecture. One starts with a special Lagrangian fibration, and then

the mirror manifold is conjectured to be the dual torus fibration over the same base. In

physics language, the action of mirror symmetry on the fibres is T-duality. In [34], a G2

version of the SYZ conjecture was suggested, relating coassociative to associative geometry.

Evidence for the G2 mirror symmetry was also found in G2 compactifications of the physical

IIA/IIB string theory on G2 holonomy manifolds [46, 47]. It would be interesting to explore

the action of mirror symmetry in the case of the topological G2 models. A good starting

point for this is by examining automorphisms of the closed G2 string algebra such as those

discussed in [48].

8.7 Zero Branes

Although we have not attempted a treatment here it should be possible to reduce the

action (6.30) to zero dimensions to determine the world-volume of D0-branes on the G2

manifold. This will be a matrix model which may be related in an interesting way to the

G2 geometry.
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A. Conventions

In this section we will detail the conventions used in dealing with the associative 3-form

and coassociative 4-form on a 7-manifold with G2 holonomy. We adopt the conventions

of [8] since we use many results from that paper. More details and original references for

G2 holonomy manifolds can be found in that paper.

Although we will generally not have need for the explicit form of φ or ∗φ we provide

a definition in terms of local coordinates, using the conventions of [8]

φ = ω123 + ω1 ∧ (ω45 + ω67) + ω2 ∧ (ω46 − ω57) − ω3 ∧ (ω47 + ω56) , (A.1)

∗φ = ω4567 + ω23 ∧ (ω67 + ω45) + ω13 ∧ (ω57 − ω46) − ω12 ∧ (ω56 + ω47) , (A.2)
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where ωi are vielbeins and ωij = ωi ∧ ωj etc.

We also reproduce some identities for φ and ∗φ from [8] that we will have need of. The

precise factors in these identities depends on a choice of conventions and normalizations

(e.g. their normalizations are related to those used in [5] by φhere
µνρ = 1

3!φ
there
MNP and

∗φhere
µνρσ = 1

4!∗φthere
MNPQ).

φµαβφαβν =
1

6
δµ
ν ,

(∗φ)µναβφ
αβγ =

1

6
φ γ

µν ,

φµνγφ
γαβ =

2

3
(∗φ) αβ

µν +
1

18
δα
[µδ

β
ν] ,

(∗φ)µνγρ(∗φ)γραβ =
1

12
(∗φ) αβ

µν +
1

72
δα
[µδ

β
ν] .

(A.3)

The exterior algebra on a G2 manifold can be decomposed into irreducible representations

of G2. The decomposition is given as follows

Λ0 = Λ0
1
, Λ1 = Λ1

7
, (A.4)

Λ2 = Λ2
7 ⊕ Λ2

14 , Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 .

Subscripts here indicate the dimension of the irreducible representation of G2. The

decomposition of higher degree forms follows by Hodge duality ∗Λi
n = Λ7−i

n .

We will frequently have use for the explicit form of the projectors onto these

representations

(π2
7) αβ

µν = 6φµνγφ
γαβ ,

(π2
14

) αβ
µν = −4(∗φ) αβ

µν +
2

3
δα
[µδ

β
ν] ,

(π3
1) αβγ

µνρ =
1

7
φµνρφ

αβγ .

(A.5)

When a G2 manifold has the structure CY3 × S1, there is a decomposition of φ and ∗φ in

terms of ρ = Re(eiαΩ), ρ̂ = Im(eiαΩ) and k (where Ω is the holomorphic 3-form and k is

the Kähler form on CY3). Let η be the volume form on S1 such that
∫

S1 η = 2πR, then

one has the decompositions

φ = ρ+ k ∧ η ,

∗φ = ρ̂ ∧ η +
1

2
k ∧ k .

(A.6)

Note that the arbitrary phase α implies that the real/imaginary part of Ω is not canonically

related to φ or ∗φ. In the paper we frequently take α = 0 but it is possible to have a CY3

sitting in a G2 with a different alignment of its complex structure.

B. Ghost structure

A special feature of Chern-Simons theory [32] and OSFT [33] (which have similar functional

forms) is that it is possible to rewrite the gauge-fixed versions of these theories in the same

form as the original theory but with the gauge or string field replaced by an extended field.

– 42 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
2

We would now like to argue that the higher (in the sense of fermion/ghost number)

string modes that are BRST closed can be added to the OSFT action and interpreted as

gauge-fixing ghosts or antifields. This was suggested in [13] by noting that the actions of

gauge-fixed CS theory [32] and OSFT bear a similar form (this is also discussed directly for

physical OSFT in [33]). The main point will be to re-write gauge-fixed CS theory in terms

of a ‘vector superfield’, where the rest of the multiplet comes from the ghosts and antifields.

This superfield has the same expansion as the string field A(Xµ, ψµ) with the ψµ
0 ’s being

replaced by fermionic coordinates. In [32] it is shown that gauge-fixed CS theory written

in terms of a superfield like this has exactly the same action as standard CS theory but

with Aµ → A. This allows us to re-interpret (6.3) with all the terms in the string field as

a gauge-fixed version of OSFT that reduces to gauge-fixed CS theory in the large t limit

(which would be an exact limit in topological string theory).

B.1 7-cycle theory

The normal modes introduce additional complications in gauge fixing the theory so to avoid

these for now we consider first the theory on the entire G2 manifold. We will gauge fix this

theory using the Batalin-Vilkovisky (BV) method of quantization rather than the Faddeev-

Popov method, which is used in [32], since BV quantization (which is carried out for OSFT

in [33]) makes the connection with the OSFT action (with no constraint on the ghost

number of the string field) more transparent. This connection between closed/open string

field theory and the gauge-fixed Kodaira-Spencer/holomorphic Chern-Simons description

of the B-model has been established in section 5 of [21].

B.1.1 BV quantization

To exhibit this similarity, let us consider the BV quantization of the classical action (6.30).

We will be brief and refer the reader to the lecture notes of Henneaux [49] for more details.

We introduce an anticommuting scalar c corresponding to the BRST ghost from the

gauge symmetry of S0 =
∫

Y ∗φ ∧CS(A), with associated BRST transformations

sAµ = Dµc , sc =
1

2
[c, c] . (B.1)

Aµ and c have BRST ghost numbers 0 and 1 respectively, and we denote s as the BRST

charge associated with BV quantization (this should not be confused with the BRST charge

Q of the worldsheet or OSFT theory). Recall that in the BV formalism, to each field/ghost

Φ one associates an anti-field/ghost Φ∗ in the Poincaré dual representation of the Lorentz

group, with opposite Grassmann parity. Thus we introduce an anticommuting antifield

A∗ µ for Aµ and a commuting antighost c∗ for c. These have ‘anti-ghost number’ 1 and 2

respectively, and their BRST transformations are

sA∗ µ = φµνρFνρ + [A∗ µ, c] , sc∗ = DµA
∗µ + [c∗, c] . (B.2)

The nilpotent BRST operator s acts on a doubly-graded complex of functionals, the coho-

mology of which, in degree zero (for both gradings) corresponds to gauge-invariant func-

tionals satisfying the equations of motion. This principle yields the specific BRST trans-
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formations above (see [49] for more details). The action of s itself defines a single grading

on this complex, given by the difference of ghost number and antighost number.

An action functional S is defined as the generating function of the BRST symmetry,

such that sF = (S,F) for any functional F of the fields or antifields. The anti-bracket

(−,−) is defined as

(A,B) =
δrA

δΦ
· δ

lB

δΦ∗
− δrA

δΦ∗
· δ

lB

δΦ
. (B.3)

Here · denotes the sum over all fields+ghosts in Φ, each contracted with their dual an-

tipartners in Φ∗, the superscripts r and l denote right and left differentiation. In our case

Φ = (Aµ, c) and Φ∗ = (A∗ µ, c∗). Since the functional S generates the BRST symmetry it

must satisfy (S, S) = 0 so that s
2 = 0.

These constraints on S allow us to solve for its explicit form, which is given by an

expansion in antighost number (the total ghost number of the functional must be zero so

the terms must have equal ghost and antighost numbers) of the form

S = S0 +

∫

Φ∗ · sΦ . (B.4)

The term Φ∗ · sΦ again denotes a sum over all fields and ghosts in Φ, contracted with their

antipartners in Φ∗ (i.e. A∗µ
sAµ + c∗sc in our example). In fact this simple form does not

hold in general but is correct for actions with an irreducible closed gauge algebra like the

one we are considering. For such actions, Faddeev-Popov gauge-fixing actually suffices but

the BV approach makes the relationship to OSFT more clear.

Thus in our case the generator of the BRST symmetry is

S =

∫

Y
φµνρ Tr

(

Aµ∂νAρ +
2

3
AµAνAρ + φµναA

∗α∂ρc+ φµναA
∗α[Aρ, c] +

1

2
φµνρc

∗[c, c]

)

.

(B.5)

It will be clear below that after a relatively trivial field redefinition, the BV quantized CS

theory can be identified with the OSFT action with unconstrained ghost number string

fields.

It should be noted that this action actually has a larger gauge symmetry than the

original action S0. This is a standard feature of BV quantization and is dealt with by

restricting the functional to a graded Lagrangian submanifold of the graded symplectic

manifold spanned by the fields and antifields (this essentially eliminates the antifield degrees

of freedom). In particular one does not sum over this doubled set of fields in the path

integral. A convenient way to eliminate Φ∗ in terms of Φ is via the gauge fermion method

whereby one fixes Φ∗ = δψ/δΦ for some choice of fermionic functional ψ[Φ] of the fields

and ghosts only.

Stationary phase expansion. Let us not get into the details of gauge-fixing for the full

7-cycle theory above since it will be difficult to evaluate the exact partition function for

this non-linear theory in any case. Rather, let us consider the theory in the weak coupling

limit where we can restrict to a quadratic expansion about a point of stationary phase.
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The quadratic part of
∫

Y ∗φ ∧CS(A), expanded as A = A0 +B around a solution A0

of the equation of motion ∗φ ∧ F = 0 is given by

Scl[B] =

∫

Y
∗φ ∧ Tr(B ∧DB) . (B.6)

The BV quantization of this action proceeds as follows. One finds a minimal solution of

the master equations takes the form

Scl[B] +

∫

Y
Tr(B∗µDµc) , (B.7)

which is invariant under the nilpotent BRST transformations

sBµ = Dµc , sc = 0 , sB∗µ = φµνρDνBρ , (B.8)

involving BRST ghost c and antifield B∗µ. Since c is now BRST-invariant, sc∗ can be a

general BRST-invariant function. A convenient choice of gauge fermion here is

ψ =

∫

Y
Tr(c̄DµBµ) , (B.9)

in terms of an additional fermionic scalar c̄ that is related to a BRST-trivial bosonic scalar

ϕ by sc̄ = ϕ. These fields constitute a non-minimal BRST-invariant addition to the action

of the form
∫

Y Tr(c̄∗ϕ), which still solves the master equation (the antifields for c̄ and ϕ

also form a BRST-trivial pair). Eliminating the antifields via the aforementioned constraint

Φ∗ = δψ/δΦ fixes B∗µ = −Dµc̄, c∗ = 0, c̄∗ = DµBµ and ϕ∗ = 0. Thus the gauge-fixed

action takes the familiar form
∫

Y
∗φ ∧ Tr (B ∧DB) + Tr (ϕDµBµ + c̄DµDµc) , (B.10)

with ϕ acting as Lagrange multiplier imposing the gauge-fixing constraint in the action

while c̄, c correspond to the fermions that appear in the standard Faddeev-Popov

determinant.

B.1.2 Unconstrained OSFT

Let us now consider the form of the OSFT action if we remove the constraint that the string

field must be of ghost number one only. Again, we consider the theory for a brane wrapping

the entire G2 manifold and extend the results of section 6 (see e.g. equation (6.19))

S(7) =

∫

Y
A ⋆ QA +

2

3
A ⋆A ⋆A

=

∫

Y
φµνρ Tr

(

Aµ∂νAρ +
2

3
AµAνAρ + βµν∂ρf + βµν [Aρ, f ] +

1

2
Cµνρ{f, f}

)

=

∫

Y
∗φ ∧ Tr

(

A ∧ dA+
2

3
A ∧A ∧A+ β ∧Df +

1

2
C{f, f}

)

,

(B.11)

where we have used the full expansion of the string field

A(Xµ, ψµ) = f(X0) +Aµ(X0)ψ
µ
0 + βµν(X0)ψ

µ
0ψ

ν
0 + Cµνρ(X0)ψ

µ
0ψ

ν
0ψ

ρ
0 . (B.12)
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Here the fields f ∈ Λ0
1
, β ∈ Λ2

7
and C ∈ Λ3

1
are respectively the degree zero, two and three

modes of the string field A in the adjoint representation of the gauge group and D = d+A

is the gauge-covariant derivative. The higher degree modes can be redefined in terms of

these lower degree ones via Hodge duality.

The interesting feature of (B.11) is that it has the same form as the action (B.5)

generated by BV quantizing the associative Chern-Simons action (6.30), corresponding to

the ghost number one part of the action. Specifically, the antifield A∗µ in (B.5) is identified

with the one-form φµνρβνρ, the antighost c∗ is identified with the zero-form φµνρCµνρ and

the ghost c with f .

Note that this identification implies the BV commutator ∗A∗ ∧ [A, c] must correspond

to the OSFT anticommutator A ∧ {f, β}. As we will explain shortly, this comes about as

a result of the different statistics of (A∗ µ, c) and (βµν , f) (which pair of fields appear in

the (anti-)commutator is not so relevant because the cyclicity of the trace can be used to

change them around).

One can check that the linearized equations of motion for β and f

φµνρ∂ρf(X) = 0 ,

φµνρ∂ρβµν(X) = 0 ,
(B.13)

reproduce the linearized Q-closure constraint. As with the ghost number one part of the

string field, this provides a worldsheet check of the kinetic terms in the OSFT action.

Ghost correlators. To check that (B.11) is indeed the correct gauge-fixed OSFT action,

or even effective D-brane action, let us calculate the correlator of the β ∧ A ∧ f term on

the disc (or upper half-plane) using the arguments in section 5.1. We will compare this

with the expression for the 3-pt vertex ∗A∗ ∧ [A, c] in (B.5). The subtlety that emerges is

that the string correlator will involve an anticommutator of Grassmann-even fields while

the CS 3-pt function can be recast into a form including a commutator of Grassmann-odd

fields. This will offset the fact that β and f have different statistics than A∗ and c.

The twisted correlator

〈

βi
µν(X)ψµψνAj

ρ(X)ψρfk(X)
〉

, (B.14)

receives contributions from the two inequivalent orderings of the operators on the disk.

The X and ψ CFTs can be treated separately and indeed the X CFT reduces to an

integral over the G2 manifold (this argument is identical to the 3-pt function calculation

in [8]). Using the SL(2,R) of the upper half-plane and the cyclicity of the trace (the above

correlator automatically involves a trace over the lie algebra indices by standard arguments)

all possible contributions will be of the form

(βi
µνtiA

j
ρtjf

ktk +Aj
µtjβ

i
νρtif

ktk)ψ
µψνψρ . (B.15)

Here the ti are a canonically normalized basis of the lie algebra. As with the 〈AAA〉
correlator, the worldsheet fermions will be contracted with fermions from φαβγψ

αψβψγ(z)
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and all the contractions will actually be equal to each other because the antisymmetry of

the fermions cancels against that of φ so the result is some multiple of

φµνρTr[βi
µνtiA

j
ρtjf

ktk +Aj
µtjβ

i
νρtif

ktk] = φµνρTr[Aj
ρtjf

ktkβ
i
µνti +Aj

µtjβ
i
νρtif

ktk] . (B.16)

Finally this becomes

φµνρAj
µf

kβi
νρTr[tj{tk, ti}] = ∗φ ∧ Tr (A ∧ {f, β}) . (B.17)

Let us now compare this to ∗A∗ ∧ [A, c], using Cµν = φµναA
∗α for notational convenience

φµνρCi
µνA

j
ρc

kTr[titjtk − titktj] = φµνρAj
ρCi

µνc
kTr[tjtkti − tjtitk]

= φµνρTr[−Aj
ρtjc

ktkCi
µνti −Aj

ρtjCi
µνtic

ktk] ,
(B.18)

where we have simply used the cyclicity of the trace for the first equality and the

Grassmann-odd nature of the coefficients Ci and ck for the second. This then becomes

−∗φ ∧ Tr (A ∧ {c, C}) . (B.19)

Although this seems like a trivial re-writing it is intended to account for the fact that

the statistics of the two fields are different. Indeed we should perhaps have mapped

gauge-fixed CS theory to string field theory via εC → β and εc → f with ε some fixed

grassmann-odd variable.

B.2 Gauge-fixed OSFT action on calibrated cycles and the BV formalism

We now consider the form of the OSFT action upon expansion of the string field on cali-

brated submanifolds of the G2 manifold, and how its structure has a natural interpretation

in terms of the BV antifield formalism. Conceptually this is very similar to the 7-cycle

theory but with the added complication of normal modes.

B.2.1 3-cycle theory

If one considers the expansion of a general string field on an associative cycle of a G2

manifold there are many string modes coming from excitations in the normal directions

A = f +Aaψ
a
0 + θIψ

I
0 + βabψ

a
0ψ

b
0 + βaIψ

a
0ψ

I
0 + βIJψ

I
0ψ

J
0 + Cabcψ

a
0ψ

b
0ψ

c
0 + . . . . (B.20)

The dots represent the higher modes with at least one normal index in them. The expansion

above includes all purely tangential modes and the lowest two orders of normal modes but

there are additional higher degree modes with one or more normal indices which we have

not written out.

Including all these contributions, one obtains from OSFT the full gauge theory action

on the 3-cycle

S(3) =

∫

M
ǫabcTr

(

Aa∂bAc +
2

3
AaAbAc + βabDcf +

1

2
Cabc[f, f ]

)

+ φaIJTr (θIDaθJ + 2βaI [θJ , f ]) ,

(B.21)
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where we have used the fact that β ∈ Λ2
7

and C ∈ Λ3
1

to derive the identities 2φabcβbc =

φaIJβIJ and 2
7φ

abcCabc = φaIJCaIJ using the G2 projection operators in appendix A. We

have rescaled the ghost fields for convenience.

The first line in S(3) can be understood in terms of the BV formalism in exactly the

same way we have already described for S(7). That is, f is the BRST ghost associated with

the gauge symmetry of Aa, the antifield A∗ a is identified with ǫabcβbc and the antighost

f∗ is identified with ǫabcCabc. This would thus lead one to the usual gauge-fixed action for

pure Chern-Simons theory, were it not for the normal modes. The second line in S(3) would

be decoupled, describing 4 free scalars in the abelian theory. The subtlety this second line

introduces in the non-abelian theory is that it makes the normal mode action degenerate.

In particular it has non-trivial BRST transformation sθI = [θI , f ] under sAa = Daf ,

sf = 1
2 [f, f ] which follows naturally from the dimensional reduction of the BRST structure

in 7 dimensions. Hence θI must also have a fermionic antifield θ∗ I which is identified with

φIJaβJa in S(3). The corresponding nilpotent BRST transformations for these antifields

sA∗ a = ǫabcFbc + φaIJ [θI , θJ ] + [A∗ a, f ] ,

sθ∗ I = 2φIaJDaθJ + [θ∗ I , f ] ,

sf∗ = DaA
∗ a + [θI , θ

∗ I ] + [f∗, f ] ,

(B.22)

then generate the BRST symmetry of S(3) via the master equation.

The quadratic term in the classical part of S(3), expanded as Aa = A0
a+Ba, θI = θ0

I +ξI
around a solution (A0

a, θ
0
I ) of the equations of motion is given by

Scl[B, ξ] =

∫

M
ǫabcTr(BaDbBc) + φaIJTr(ξIDaξJ + θ0

I [Ba, ξJ ]) . (B.23)

One finds a minimal solution of the master equations for this classical action takes the form

Scl[B, ξ] +

∫

M
Tr(B∗ aDac+ ξ∗ I [θ0

I , c]) , (B.24)

which is invariant under the nilpotent BRST transformations

sBa = Dac , sξI = [θ0
I , c] , sc = 0 , (B.25)

sB∗ a = ǫabcDbBc + φaIJ [θ0
I , ξJ ] , sξ∗ I = φIaJ (DaξJ − [θ0

J , Ba]) ,

involving BRST ghost c and antifields B∗ a, ξ∗ I .

Thus far we have not seen any difference in structure to that one would get from

dimensional reduction of the 7-dimensional theory. To highlight a potential difference

between this reduction and the quantization of the 3-dimensional theory, considered in its

own right, we make the choice of gauge fermion

ψ =

∫

M
Tr(c̄(DaB

a + α [θ0
I , ξ

I ])) , (B.26)

involving a constant α. One has α = 1 from the 7-dimensional perspective but α = 0 is

a more natural choice in 3 dimensions. The additional fermionic scalar c̄ is related to a
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BRST-trivial bosonic scalar ϕ by sc̄ = ϕ as before, and again gives a non-minimal addition

to the action
∫

M Tr(c̄∗ϕ).

Eliminating the antifields via Φ∗ = δψ/δΦ fixes B∗ a = −Dac̄, ξ∗ I = −α [θ0
I , c̄], c

∗ = 0,

c̄∗ = DaB
a + α [θ0

I , ξ
I ] and ϕ∗ = 0. Thus the gauge-fixed action takes the form

Scl[B, ξ] +

∫

M
Tr

(

ϕ(DaB
a + α [θ0

I , ξ
I ]) + c̄

(

DaD
ac+ α [θ0

I , [θ
0 I , c]]

))

. (B.27)

One can check that the α-dependent terms combine to form a BRST-exact contribution to

this action. Thus we argue that any choice of α will give an equivalent description of the

quantum theory and we will take α = 0.

B.2.2 4-cycle theory

A similar expansion of the string field on a coassociative 4-cycle in the G2 manifold gives

rise to the full gauge theory action

S(4) =

∫

M
φIabTr

(

θIFab

)

+
2

3
φIJKTr

(

θIθJθK

)

+
1

2
φIJKTr

(

CIJK [f, f ]
)

+ 2φIabTr
(

βIaDbf
)

+ φIJKTr
(

βIJ [θK , f ]
)

,

(B.28)

where β ∈ Λ2
7

and C ∈ Λ3
1

are again used to derive the identities 2φIJKβJK = φIabβab,
2
7φ

IJKCIJK = φIabCIab for the ghosts on the 4-cycle.

In terms of the BV formalism, f is again the BRST ghost associated with the gauge

symmetry of Aa, the antifields A∗ a and θ∗ I are respectively identified with φabIβbI and

φIJKβJK whilst the antighost f∗ is identified with φIJKCIJK . The BRST transformations

of these fields are again

sAa = Daf , sθI = [θI , f ] , sf =
1

2
[f, f ] ,

sA∗ a = 2φabIDbθI + [A∗ a, f ] ,

sθ∗ I = φIabFab + φIJK [θJ , θK ] + [θ∗ I , f ] ,

sf∗ = DaA
∗ a + [θI , θ

∗ I ] + [f∗, f ] ,

(B.29)

generating a symmetry of S(4) via the master equation.

The quadratic term in the classical part of S(4), expanded as Aa = A0
a+Ba, θI = θ0

I +ξI
around a solution (A0

a, θ
0
I ) of the equations of motion is given by

Scl[B, ξ] =

∫

M
φIabTr

(

ξIDaBb + θ0
IBaBb

)

+ φIJKTr
(

θ0
IξJξK

)

. (B.30)

One again finds a minimal solution of the master equations for this classical action takes

the form

Scl[B, ξ] +

∫

M
Tr(B∗ aDac+ ξ∗ I [θ0

I , c]) , (B.31)

which is invariant under the nilpotent BRST transformations

sBa = Dac , sξI = [θ0
I , c] , sc = 0 , (B.32)

sB∗ a = φabI
(

DbξI − [θ0
I , Bb]

)

, sξ∗ I = φIabDaBb + φIJK [θ0
J , ξK ] ,
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involving BRST ghost c and antifields B∗ a, ξ∗ I .

We again make the choice of gauge fermion

ψ =

∫

M
Tr

(

c̄
(

DaB
a + α

[

θ0
I , ξ

I
]))

, (B.33)

involving the constant α. Everything now follows just as for the 3-cycle case. The gauge-

fixed action takes the form

Scl[B, ξ] +

∫

M
Tr

(

ϕ
(

DaB
a + α

[

θ0
I , ξ

I
])

+ c̄
(

DaD
ac+ α

[

θ0
I ,

[

θ0 I , c
]]))

, (B.34)

and we choose α = 0 to ignore the BRST-exact α-dependent terms.
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